Home
Class 12
MATHS
f(x) = sqrt([((x + 1) (x-3))/((x-2))] is...

`f(x) = sqrt([((x + 1) (x-3))/((x-2))]` is a real valued function in the domain

A

`]-oo ,-1] uu [3,oo[`

B

`]-oo,-1] uu ]2,3]`

C

`[-1 ,+2 ] uu [3,oo[`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\frac{(x + 1)(x - 3)}{(x - 2)}} \), we need to ensure that the expression inside the square root is non-negative, as well as that the denominator is not zero. ### Step-by-Step Solution: 1. **Set the Expression Inside the Square Root Greater Than or Equal to Zero:** \[ \frac{(x + 1)(x - 3)}{(x - 2)} \geq 0 \] This means that the numerator \((x + 1)(x - 3)\) must be non-negative, and the denominator \((x - 2)\) must be positive (to avoid division by zero). 2. **Find the Critical Points:** We set the numerator and denominator to zero to find the critical points: - \(x + 1 = 0 \Rightarrow x = -1\) - \(x - 3 = 0 \Rightarrow x = 3\) - \(x - 2 = 0 \Rightarrow x = 2\) The critical points are \(x = -1\), \(x = 2\), and \(x = 3\). 3. **Create a Number Line:** We will analyze the intervals created by these critical points: \[ (-\infty, -1), \quad (-1, 2), \quad (2, 3), \quad (3, \infty) \] 4. **Test Each Interval:** - **Interval \((- \infty, -1)\)**: Choose \(x = -2\) \[ \frac{(-2 + 1)(-2 - 3)}{-2 - 2} = \frac{(-1)(-5)}{-4} = \frac{5}{-4} < 0 \quad \text{(not valid)} \] - **Interval \((-1, 2)\)**: Choose \(x = 0\) \[ \frac{(0 + 1)(0 - 3)}{0 - 2} = \frac{(1)(-3)}{-2} = \frac{-3}{-2} > 0 \quad \text{(valid)} \] - **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5 + 1)(2.5 - 3)}{2.5 - 2} = \frac{(3.5)(-0.5)}{0.5} = \frac{-1.75}{0.5} < 0 \quad \text{(not valid)} \] - **Interval \((3, \infty)\)**: Choose \(x = 4\) \[ \frac{(4 + 1)(4 - 3)}{4 - 2} = \frac{(5)(1)}{2} = \frac{5}{2} > 0 \quad \text{(valid)} \] 5. **Include Critical Points:** - At \(x = -1\): \(f(-1) = \sqrt{\frac{0 \cdot (-4)}{-3}} = 0\) (valid) - At \(x = 2\): The denominator becomes zero, so it is not included. - At \(x = 3\): \(f(3) = \sqrt{\frac{(4)(0)}{1}} = 0\) (valid) 6. **Combine Valid Intervals:** The valid intervals are \([-1, 2)\) and \((3, \infty)\). Therefore, the domain of \(f(x)\) is: \[ \text{Domain} = [-1, 2) \cup [3, \infty) \] ### Final Answer: The domain of the function \( f(x) \) is: \[ [-1, 2) \cup [3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The largest set of real values of x for which f(x)=sqrt((x+2)(5-x))-(1)/(sqrt(x^(2)-4))- is a real function is

Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real valued of x, is

For Real valued function f(x)=|x-3| then the value of domain and Range is?

The domain of the real valued function f(x)=sqrt((x-2)/(3-x)) is . .

[" Number of integers in the domain "],[" of real valued function "],[f(x)=sqrt((1)/(log_((3x-2))(2x+3))-log_((2x+3))(x^(2)-x+1))],[" is equal to- "]

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Find the domain of each of the following real valued functions of real variable: f(x)=(3x-2)/(x+1)

Find the domain of each of the following real valued functions of real variable: f(x)=sqrt(x-2) (ii) f(x)=(1)/(sqrt(x^(2)-1)) (iii) f(x)=sqrt(9-x^(2))( iv )f(x)=sqrt((x-2)/(3-x))

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. Domain of cos^(-1) [2x^2 - 3], where [**] denotes the greatest integ...

    Text Solution

    |

  2. The domain of the function f (x) = sqrt""(2-2x-x^2) is

    Text Solution

    |

  3. f(x) = sqrt([((x + 1) (x-3))/((x-2))] is a real valued function in the...

    Text Solution

    |

  4. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  5. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  6. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  7. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  8. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |

  9. The domain of the function f (x) =sqrt(x- sqrt(1-x^2)) is

    Text Solution

    |

  10. The domain of the function sqrt(x^2 - [x]^2), where [x] has the usual ...

    Text Solution

    |

  11. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |

  12. The domain of the derivative of the function "JPNMLKOBJMATV02C25E030...

    Text Solution

    |

  13. The domain of definition of log4 log5 log3 (18 x -x^2 - 77) is ...

    Text Solution

    |

  14. The domain of the function log(10) log(10) (1 + x^3) is

    Text Solution

    |

  15. The domain of the function y = f (x)=(1)/(log (10) (1-x))+sqrt(x +2) i...

    Text Solution

    |

  16. Domain of definition of the functioni f(x)=3/(4-x^(2))+log(10)(x^(3)-x...

    Text Solution

    |

  17. The domain of f(x)=(log(2)(x+3))/(x^(2)+3x+2) is

    Text Solution

    |

  18. The domain of the function f(x) = sqrt({(-log (0.3) (x-1))/(-x^2+ 3x ...

    Text Solution

    |

  19. The domain of definition of the function f(x) = sin log {(sqrt""(4-x^2...

    Text Solution

    |

  20. The domain of definition of the real function f(x) = sqrt""(log(16)x^...

    Text Solution

    |