Home
Class 12
MATHS
The domain of definition of f(x) = sqrt...

The domain of definition of `f(x) = sqrt((1-|x|)/(2-|x|))` is

A

`(-oo ,oo) -[-2,2]`

B

`(-oo,oo)-[-1,1]`

C

`[-1,1] uu (-oo ,-2) uu (2,oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\frac{1 - |x|}{2 - |x|}} \), we need to ensure that the expression inside the square root is non-negative and that the denominator is not zero. ### Step 1: Set the condition for the square root The expression inside the square root must be greater than or equal to zero: \[ \frac{1 - |x|}{2 - |x|} \geq 0 \] ### Step 2: Identify the critical points To solve the inequality, we first find the points where the numerator and denominator are zero. 1. **Numerator**: Set \( 1 - |x| = 0 \) \[ |x| = 1 \implies x = -1 \text{ or } x = 1 \] 2. **Denominator**: Set \( 2 - |x| = 0 \) \[ |x| = 2 \implies x = -2 \text{ or } x = 2 \] ### Step 3: Determine the intervals The critical points are \( -2, -1, 1, 2 \). We will test the intervals created by these points: - \( (-\infty, -2) \) - \( (-2, -1) \) - \( (-1, 1) \) - \( (1, 2) \) - \( (2, \infty) \) ### Step 4: Test each interval 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \) \[ \frac{1 - 3}{2 - 3} = \frac{-2}{-1} = 2 \quad (\text{positive}) \] 2. **Interval \( (-2, -1) \)**: Choose \( x = -1.5 \) \[ \frac{1 - 1.5}{2 - 1.5} = \frac{-0.5}{0.5} = -1 \quad (\text{negative}) \] 3. **Interval \( (-1, 1) \)**: Choose \( x = 0 \) \[ \frac{1 - 0}{2 - 0} = \frac{1}{2} \quad (\text{positive}) \] 4. **Interval \( (1, 2) \)**: Choose \( x = 1.5 \) \[ \frac{1 - 1.5}{2 - 1.5} = \frac{-0.5}{0.5} = -1 \quad (\text{negative}) \] 5. **Interval \( (2, \infty) \)**: Choose \( x = 3 \) \[ \frac{1 - 3}{2 - 3} = \frac{-2}{-1} = 2 \quad (\text{positive}) \] ### Step 5: Combine the results From the tests, we find that the inequality is satisfied in the intervals: - \( (-\infty, -2) \) - \( (-1, 1) \) - \( (2, \infty) \) ### Step 6: Exclude points where the denominator is zero The points \( x = -2 \) and \( x = 2 \) must be excluded from the domain because they make the denominator zero. ### Final Domain Thus, the domain of \( f(x) \) is: \[ \boxed{(-\infty, -2) \cup [-1, 1] \cup (2, \infty)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Domain of :f(x)=sqrt((1-|x|)/(2-|x|))

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of definition of f(x)=sqrt((x+3)/((2-x)(x-5))) is

The domain of definition of f(x)=sqrt((log_(0.3)|x-2|)/(|x|)) , is

The domain of definition of f(x)= sin^(-1)sqrt(x-1)

Find the domain of f(x)=sqrt((1-|x|)/(2-|x|)) , is

The domain of definition of f(X) = sin^(-1)(-x^(2)) is

The domain of f(x) = sqrt((2-|x|)/(|x|-1)) is

find the domain of f(x)=sqrt((1-|x|)/(|x|-2))

The domain of definition of f(x)=sin^(-1)(|x-1|-2) is

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The domain of the function sqrt(x^2 - 5x +6 ) + sqrt(2x + 8- x^2) ...

    Text Solution

    |

  2. The domain of the real valued function sqrt((x+2) (5-x) ) - (1)/( s...

    Text Solution

    |

  3. The domain of definition of f(x) = sqrt((1-|x|)/(2-|x|)) is

    Text Solution

    |

  4. The domain of definition of the function f(x)=(1)/(sqrt(|x|-x)) is

    Text Solution

    |

  5. Given f (x) =(1)/( sqrt"" (|x| -x)) , g (x) = (1)/( sqrt""(x-|x|)) t...

    Text Solution

    |

  6. The domain of the function f (x) =sqrt(x- sqrt(1-x^2)) is

    Text Solution

    |

  7. The domain of the function sqrt(x^2 - [x]^2), where [x] has the usual ...

    Text Solution

    |

  8. The domain of the function f(x)=root(6)(4^(x)+8^(2//3(x-2))-52-2^(2(...

    Text Solution

    |

  9. The domain of the derivative of the function "JPNMLKOBJMATV02C25E030...

    Text Solution

    |

  10. The domain of definition of log4 log5 log3 (18 x -x^2 - 77) is ...

    Text Solution

    |

  11. The domain of the function log(10) log(10) (1 + x^3) is

    Text Solution

    |

  12. The domain of the function y = f (x)=(1)/(log (10) (1-x))+sqrt(x +2) i...

    Text Solution

    |

  13. Domain of definition of the functioni f(x)=3/(4-x^(2))+log(10)(x^(3)-x...

    Text Solution

    |

  14. The domain of f(x)=(log(2)(x+3))/(x^(2)+3x+2) is

    Text Solution

    |

  15. The domain of the function f(x) = sqrt({(-log (0.3) (x-1))/(-x^2+ 3x ...

    Text Solution

    |

  16. The domain of definition of the function f(x) = sin log {(sqrt""(4-x^2...

    Text Solution

    |

  17. The domain of definition of the real function f(x) = sqrt""(log(16)x^...

    Text Solution

    |

  18. The domain of the function f (x) = sqrt"" [log (1//| sin x |)] is

    Text Solution

    |

  19. Cosider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such t...

    Text Solution

    |

  20. The domain of definition of the function f(x) = sqrt(log(10) ((5 ...

    Text Solution

    |