Home
Class 12
MATHS
The domain of the real valued function l...

The domain of the real valued function `log_([x+1//2])|x^2 -x-2|` is

A

`[3/2,2) U (2,oo)`

B

`[3/2 ,oo)-{2}`

C

`[1/2 ,oo)-{2}`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log_{\left[\frac{x+1}{2}\right]} |x^2 - x - 2| \), we need to consider the conditions for the logarithmic function and the absolute value function. ### Step 1: Identify the conditions for the logarithmic function The logarithmic function \( \log_b(a) \) has the following conditions: 1. The base \( b \) must be greater than 0 and not equal to 1. 2. The argument \( a \) must be greater than 0. ### Step 2: Analyze the argument \( |x^2 - x - 2| \) We need to find when \( |x^2 - x - 2| > 0 \): - First, solve \( x^2 - x - 2 = 0 \) to find the points where the expression equals zero. Factoring the quadratic: \[ x^2 - x - 2 = (x - 2)(x + 1) = 0 \] This gives us the roots: \[ x = 2 \quad \text{and} \quad x = -1 \] The expression \( x^2 - x - 2 \) will be zero at \( x = 2 \) and \( x = -1 \). Therefore, \( |x^2 - x - 2| > 0 \) for all \( x \) except \( x = 2 \) and \( x = -1 \). ### Step 3: Analyze the base \( \left[\frac{x+1}{2}\right] \) Next, we need to ensure that the base \( \left[\frac{x+1}{2}\right] \) satisfies: 1. \( \left[\frac{x+1}{2}\right] > 0 \) 2. \( \left[\frac{x+1}{2}\right] \neq 1 \) #### Condition 1: \( \left[\frac{x+1}{2}\right] > 0 \) The greatest integer function \( \left[\frac{x+1}{2}\right] \) is greater than 0 when: \[ \frac{x+1}{2} \geq 1 \implies x + 1 \geq 2 \implies x \geq 1 \] #### Condition 2: \( \left[\frac{x+1}{2}\right] \neq 1 \) To ensure that \( \left[\frac{x+1}{2}\right] \neq 1 \): \[ \frac{x+1}{2} < 2 \implies x + 1 < 4 \implies x < 3 \] ### Step 4: Combine the conditions From the analysis, we have: 1. \( x \geq 1 \) 2. \( x < 3 \) 3. Exclude \( x = 2 \) and \( x = -1 \) Thus, the valid range for \( x \) is: \[ 1 \leq x < 3 \quad \text{excluding} \quad x = 2 \] ### Step 5: Express the domain in interval notation The domain can be expressed as: \[ [1, 2) \cup (2, 3) \] ### Final Answer The domain of the function \( f(x) = \log_{\left[\frac{x+1}{2}\right]} |x^2 - x - 2| \) is: \[ [1, 2) \cup (2, 3) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If [x] denote the greater integer less than or equal to x, then the domain of definition of the real valued funciton f(c) =log_([x + 1//2])|x^(2) -x-2| , is

The domain of real valued function f(x)=log_([x-(1)/(2)])[|x+1|] (where I.] denotes greatest integer function),is

"Find the domain of the real valued function "f(x)=log(x^(2)-4x+3)

Find the domain of the real function log(x^(2)-4x+3)

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

The domain of the real valued function f(x)=sqrt(1-2x)+2sin^(-1)((3x-1)/(2)) is

The domain of the function f(x)=log_(2x-1)(x-1) is

Find the domain of the real-valued function: f(x)=(x^(2)-x+1)/(x^(2)-5x+4) .

Find the domain of the real valued function f(x)=sqrt(x^(2)-1)+(1)/(sqrt(x^(2)-3x+2))

ML KHANNA-FUNCTIONS-PROBLEM SET (3)
  1. The domain of definition of f(x) = log {{log x)^2 - 5 log x+6} is equa...

    Text Solution

    |

  2. The domain of sqrt(log(x^2 -1)(x) is

    Text Solution

    |

  3. The domain of the real valued function log([x+1//2])|x^2 -x-2| is

    Text Solution

    |

  4. The set of all x for which there are no functions f(x) = log((x-2)/...

    Text Solution

    |

  5. If f (x) = log(x^2) 36 and g(x) = logx 6, then f (x) = g(x) holds for...

    Text Solution

    |

  6. The range of the function f (x)=1/(2-sin 3x) =

    Text Solution

    |

  7. The domain and range of the function f (x) = ""^(7-x)P(x-3)are ..........

    Text Solution

    |

  8. The range of the function f (x) = ""^(7-x)P(x-3)are .......

    Text Solution

    |

  9. The range of the function f(x) = sqrt( ""^(x^2 + 4x )C( 2x^2 +3))...

    Text Solution

    |

  10. The domain of the function f(x) = sqrt( ""^(x^2 + 4x )C( 2x^2 +3)...

    Text Solution

    |

  11. The domain of the function f(x)=""^(16-x)C(2x-1+^(20-3x)P(4x-5), where...

    Text Solution

    |

  12. The range of the function y=(x)/( 1+x^2)is

    Text Solution

    |

  13. Range of f(x) =(x^2 +x+2)/(x^2 +x+1)- oo lt x lt oo, is

    Text Solution

    |

  14. Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^...

    Text Solution

    |

  15. The range of the function y=(x-1)/(x^2 -3x +3) is

    Text Solution

    |

  16. If f (x) =(1+ sqrt(-1 ) cos x)/( 1- sqrt(-1)sin x) then its range ...

    Text Solution

    |

  17. If b^2-4ac=0,a>0 then the domain of the function f(x)=log(a x^3+(a+b)x...

    Text Solution

    |

  18. The domain of definition of the function f (x) = log|4-x^2| is R-{2,-2...

    Text Solution

    |

  19. If f1 (x) and f2 (x) are defined on domains D1 and D2 respectively,...

    Text Solution

    |

  20. The domain of definition of the function f (x) = logx e is .........

    Text Solution

    |