Home
Class 14
MATHS
If (x + 1)/( x - 1) = (a)/(b) and (1 - y...

If `(x + 1)/( x - 1) = (a)/(b) and (1 - y)/( 1 + y) = (b)/(a)` then the value of `( x - y)/( 1 + xy)` is

A

`(2 ab)/( a^(2) - b^(2))`

B

` (a^(2) - b^(2))/(2ab)`

C

`(a^(2) + b^(2))/( 2ab)`

D

`(a^(2) - b^(2))/( ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to manipulate the equations step by step. We are given two equations: 1. \(\frac{x + 1}{x - 1} = \frac{a}{b}\) 2. \(\frac{1 - y}{1 + y} = \frac{b}{a}\) We want to find the value of \(\frac{x - y}{1 + xy}\). ### Step 1: Express \(x\) in terms of \(a\) and \(b\) From the first equation: \[ \frac{x + 1}{x - 1} = \frac{a}{b} \] Cross-multiplying gives: \[ b(x + 1) = a(x - 1) \] Expanding both sides: \[ bx + b = ax - a \] Rearranging terms: \[ bx - ax = -a - b \] Factoring out \(x\): \[ (b - a)x = -a - b \] Thus, we can express \(x\) as: \[ x = \frac{-a - b}{b - a} \] ### Step 2: Express \(y\) in terms of \(a\) and \(b\) From the second equation: \[ \frac{1 - y}{1 + y} = \frac{b}{a} \] Cross-multiplying gives: \[ a(1 - y) = b(1 + y) \] Expanding both sides: \[ a - ay = b + by \] Rearranging terms: \[ a - b = ay + by \] Factoring out \(y\): \[ a - b = y(a + b) \] Thus, we can express \(y\) as: \[ y = \frac{a - b}{a + b} \] ### Step 3: Substitute \(x\) and \(y\) into \(\frac{x - y}{1 + xy}\) Now we need to calculate \(x - y\) and \(1 + xy\). 1. **Calculate \(x - y\)**: \[ x - y = \frac{-a - b}{b - a} - \frac{a - b}{a + b} \] Finding a common denominator: \[ x - y = \frac{(-a - b)(a + b) - (a - b)(b - a)}{(b - a)(a + b)} \] Expanding the numerator: \[ = \frac{-a^2 - ab - ab - b^2 - (ab - a^2 + b^2 - ab)}{(b - a)(a + b)} \] Simplifying: \[ = \frac{-a^2 - 2ab - b^2 + a^2 + b^2}{(b - a)(a + b)} = \frac{-2ab}{(b - a)(a + b)} \] 2. **Calculate \(xy\)**: \[ xy = \left(\frac{-a - b}{b - a}\right) \left(\frac{a - b}{a + b}\right) \] Simplifying: \[ = \frac{(-a - b)(a - b)}{(b - a)(a + b)} = \frac{-(a^2 - ab + ab - b^2)}{(b - a)(a + b)} = \frac{-(a^2 - b^2)}{(b - a)(a + b)} \] Thus, \[ 1 + xy = 1 - \frac{(a^2 - b^2)}{(b - a)(a + b)} = \frac{(b - a)(a + b) - (a^2 - b^2)}{(b - a)(a + b)} \] The numerator simplifies to: \[ = \frac{(b - a)(a + b) - (a^2 - b^2)}{(b - a)(a + b)} = \frac{(b - a)(a + b) - (a - b)(a + b)}{(b - a)(a + b)} = \frac{(b - a)(a + b) + (b - a)(a + b)}{(b - a)(a + b)} = \frac{2(b - a)(a + b)}{(b - a)(a + b)} = 2 \] ### Step 4: Combine results to find \(\frac{x - y}{1 + xy}\) Now we can find: \[ \frac{x - y}{1 + xy} = \frac{\frac{-2ab}{(b - a)(a + b)}}{2} = \frac{-ab}{(b - a)(a + b)} \] ### Final Answer Thus, the value of \(\frac{x - y}{1 + xy}\) is: \[ \frac{-ab}{(b - a)(a + b)} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - II) |227 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If xy(x + y) = 1 then,the value of 1/(x^3 y^3) -x^3 - y^3 is

If x - y = 1 , then the value of x^3 - y^3 - 3xy will be :

If x+y=1 then the value of (x^(3)+y^(3)+3xy) is

KIRAN PUBLICATION-ALGEBRA-Test Yourself
  1. If (x + 1)/( x - 1) = (a)/(b) and (1 - y)/( 1 + y) = (b)/(a) then the ...

    Text Solution

    |

  2. p and q are positive numbers satisfying 3 p + 2 pq = 4 and 5 q + ...

    Text Solution

    |

  3. If a + b + c = 5 ,ab + bc + ca = 7 and abc = 3 find the value of (...

    Text Solution

    |

  4. If (a)/(b+c) + (b)/(c+a) + (c )/(a+b)= 1 find (a^(2))/(b+c) + (b^(2))/...

    Text Solution

    |

  5. If a + b + c = 0 then ( 2 a^(2))/( b^(2) + c^(2) - a^(2)) + ( 2b^(2)...

    Text Solution

    |

  6. Resolve into factors : ( x - 1) ( x + 1) ( x + 3) ( x + 5) + 7

    Text Solution

    |

  7. If a = 7 + 4 sqrt( 3) find the value of ( 3 a ^(6) + 2a ^(4) + 4a^...

    Text Solution

    |

  8. What will be the angle between the lines y - x - 7 and sqrt (3 ) y...

    Text Solution

    |

  9. What will be the point on the x- axis which is eduidistant from th...

    Text Solution

    |

  10. What is the distance of the point (2 , 3) from the line 2 x + 3y +...

    Text Solution

    |

  11. In what ratio, the line joining (-1, 1) and ( 5, 7) is divided by the...

    Text Solution

    |

  12. A point R (h, k) divides a line segment between the axis in the rat...

    Text Solution

    |

  13. What point on the x-axis are at a distance of 4 units from the line ...

    Text Solution

    |

  14. In what ratio , the line joining (-1, 1) and ( 5, 7) is divide by t...

    Text Solution

    |

  15. What will be the co-ordinates of centroid of a triangle whose vertices...

    Text Solution

    |

  16. Find the area of the triangle formed by the straight lines 2 x + 3 ...

    Text Solution

    |

  17. If x = ( sqrt( p + 2 q)+ sqrt(p - 2q))/( sqrt( p + 2 q) - sqrt( p - 2...

    Text Solution

    |

  18. If x = ( sqrt( 3) + sqrt(2))/( sqrt(3) - sqrt(2)) and y = ( sqrt(3)...

    Text Solution

    |

  19. If pq ( p - q) = 1 then the value of p^(3) - q^(3)- (1)/( p^(3) q^...

    Text Solution

    |

  20. If 3 x + (3)/( 4x) = 6 then the value of 8 x ^(3) + (1)/( 8 x^(3))...

    Text Solution

    |

  21. If (a^(3) + b^(3))/( c^(3)) = (b^(3) + c^(3))/( a^(3)) = (c^(3) + a^(...

    Text Solution

    |