Home
Class 14
MATHS
If 2 p + (1)/( p) = 4 then value of p...

If ` 2 p + (1)/( p) = 4` then value of ` p^(3) + (1)/(8 p ^(3))` is

A

4

B

5

C

8

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2p + \frac{1}{p} = 4 \) and find the value of \( p^3 + \frac{1}{8p^3} \), we can follow these steps: ### Step 1: Solve for \( p \) We start with the equation: \[ 2p + \frac{1}{p} = 4 \] To eliminate the fraction, we can multiply both sides by \( p \): \[ 2p^2 + 1 = 4p \] Rearranging the equation gives us: \[ 2p^2 - 4p + 1 = 0 \] ### Step 2: Use the quadratic formula We can solve the quadratic equation \( 2p^2 - 4p + 1 = 0 \) using the quadratic formula: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = -4 \), and \( c = 1 \): \[ p = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \] Calculating the discriminant: \[ p = \frac{4 \pm \sqrt{16 - 8}}{4} = \frac{4 \pm \sqrt{8}}{4} = \frac{4 \pm 2\sqrt{2}}{4} = 1 \pm \frac{\sqrt{2}}{2} \] ### Step 3: Calculate \( p^3 + \frac{1}{8p^3} \) Now, we need to find \( p^3 + \frac{1}{8p^3} \). We can use the identity for cubes: \[ p^3 + \frac{1}{p^3} = (p + \frac{1}{p})^3 - 3(p + \frac{1}{p}) \] First, we find \( p + \frac{1}{p} \): From the original equation \( 2p + \frac{1}{p} = 4 \), we can express \( p + \frac{1}{p} \): \[ p + \frac{1}{p} = 2 \] Now we can calculate \( p^3 + \frac{1}{p^3} \): \[ p^3 + \frac{1}{p^3} = (2)^3 - 3(2) = 8 - 6 = 2 \] Next, we need to find \( \frac{1}{8p^3} \): Since \( p^3 + \frac{1}{p^3} = 2 \), we can express \( \frac{1}{8p^3} \) as: \[ \frac{1}{8p^3} = \frac{1}{8} \cdot \frac{1}{p^3} \] We already have \( p^3 \) from our earlier calculation. ### Step 4: Combine the results Thus, we can find: \[ p^3 + \frac{1}{8p^3} = 2 + \frac{1}{8} \cdot \frac{1}{p^3} \] To find \( \frac{1}{p^3} \), we can use the earlier result \( p^3 + \frac{1}{p^3} = 2 \) to find \( p^3 \) and then substitute back to find the final answer. ### Final Calculation Since \( p^3 + \frac{1}{p^3} = 2 \), we can find: \[ p^3 + \frac{1}{8p^3} = 2 + \frac{1}{8} \cdot \frac{1}{p^3} = 2 + \frac{1}{8} \cdot (2 - p^3) \] This leads us to: \[ p^3 + \frac{1}{8p^3} = 2 + \frac{1}{8} \cdot (2) = 2 + \frac{1}{4} = \frac{8}{4} + \frac{1}{4} = \frac{9}{4} \] Thus, the final answer is: \[ \frac{9}{4} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If p + 1/(p+2)=1 , then the value of (p+2)^3 + 1/((p+2)^3)-3 is :

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If x + y = 7, then what is the value of x ^(3) + y ^(3) + 21 x y ?

    Text Solution

    |

  2. If 4 b^(2) + (1)/( b^(2)) = 2 then the value of 8 b^(3) + (1)/( b^(...

    Text Solution

    |

  3. If 2 p + (1)/( p) = 4 then value of p^(3) + (1)/(8 p ^(3)) is

    Text Solution

    |

  4. If a^(4) + b^(4) = a^(2) b^(2) , then (a^(6) + b^(6)) equals

    Text Solution

    |

  5. If x + (1)/( x) = sqrt(3) then the value of x^(18) + x ^(12) + x^(6...

    Text Solution

    |

  6. If (a)/(b) + (b)/(a) =1, then the value of a ^(3) + b ^(3) is equal to

    Text Solution

    |

  7. If a + (1)/(a) + 1 = 0 (a ne 0) then the value of (a^(4) - a) is

    Text Solution

    |

  8. If x = a+(1)/( a) and y = a - (1)/(a) then value of x^(4) + y^(4)...

    Text Solution

    |

  9. If for two real constants a and b the expression ax ^(3) + 3x^(2) -...

    Text Solution

    |

  10. If x = 5 , y = 6 and z = - 11 , then the value of x^(3) + y^(3) + ...

    Text Solution

    |

  11. If (1)/( x + y) = (1)/(x) + (1)/(y) ( x ne 0, y ne 0, x ne y) then t...

    Text Solution

    |

  12. If x = a ( b - c) , y = b ( c - a) z = c ( a - b) then the value of...

    Text Solution

    |

  13. If xy ( x + y) = 1 ,then the value of (1)/( x^(3) y^(3)) - x^(3) -...

    Text Solution

    |

  14. If x + y = z then the expression x^(3) + y^(3) - z^(3) + 3xyz will ...

    Text Solution

    |

  15. If a + (1)/(a) = sqrt(3) , then the value of a^(6) - (1)/(a^(6)) +...

    Text Solution

    |

  16. If x^(3) + y^(3) = 35 and x + y = 5 then the value of (1)/( x) + (...

    Text Solution

    |

  17. If ( a^(2) + b^(2))^(3) = (a^(3) + b^(3))^(2) then (a)/(b) + (b)/(a...

    Text Solution

    |

  18. If a+ b + c = 0 then the value of (a^(3) + b^(3) + c^(3))is

    Text Solution

    |

  19. If m^(4) + (1)/(m^(4)) = 119 then m - (1)/(m) = ?

    Text Solution

    |

  20. If x + y + z = 6 then the value of ( x - 1) ^(3) + ( y - 2) ^(3) + ...

    Text Solution

    |