Home
Class 14
MATHS
If a + (1)/(a) + 1 = 0 (a ne 0) then th...

If ` a + (1)/(a) + 1 = 0 (a ne 0)` then the value of ` (a^(4) - a)` is

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a + \frac{1}{a} + 1 = 0 \) and find the value of \( a^4 - a \), we can follow these steps: ### Step 1: Rearrange the given equation Start with the equation: \[ a + \frac{1}{a} + 1 = 0 \] Rearranging gives: \[ a + \frac{1}{a} = -1 \] ### Step 2: Cube both sides Next, we will cube both sides of the equation. Recall the identity: \[ \left(a + \frac{1}{a}\right)^3 = a^3 + \frac{1}{a^3} + 3\left(a + \frac{1}{a}\right) \] Substituting \( k = a + \frac{1}{a} \): \[ k^3 = a^3 + \frac{1}{a^3} + 3k \] Substituting \( k = -1 \): \[ (-1)^3 = a^3 + \frac{1}{a^3} + 3(-1) \] This simplifies to: \[ -1 = a^3 + \frac{1}{a^3} - 3 \] Thus: \[ a^3 + \frac{1}{a^3} = -1 + 3 = 2 \] ### Step 3: Express \( a^4 \) in terms of \( a^3 \) We know that: \[ a^4 = a \cdot a^3 \] So we can express \( a^4 - a \) as: \[ a^4 - a = a \cdot a^3 - a = a(a^3 - 1) \] ### Step 4: Substitute \( a^3 \) From our previous result, we have \( a^3 + \frac{1}{a^3} = 2 \). This implies: \[ a^3 = 2 - \frac{1}{a^3} \] However, we already know \( a^3 = 1 \) is a valid solution since \( a^3 + \frac{1}{a^3} = 2 \) when \( a^3 = 1 \). ### Step 5: Calculate \( a^4 - a \) Substituting \( a^3 = 1 \): \[ a(a^3 - 1) = a(1 - 1) = a \cdot 0 = 0 \] ### Final Answer Thus, the value of \( a^4 - a \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos
KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If x + (1)/( x) = sqrt(3) then the value of x^(18) + x ^(12) + x^(6...

    Text Solution

    |

  2. If (a)/(b) + (b)/(a) =1, then the value of a ^(3) + b ^(3) is equal to

    Text Solution

    |

  3. If a + (1)/(a) + 1 = 0 (a ne 0) then the value of (a^(4) - a) is

    Text Solution

    |

  4. If x = a+(1)/( a) and y = a - (1)/(a) then value of x^(4) + y^(4)...

    Text Solution

    |

  5. If for two real constants a and b the expression ax ^(3) + 3x^(2) -...

    Text Solution

    |

  6. If x = 5 , y = 6 and z = - 11 , then the value of x^(3) + y^(3) + ...

    Text Solution

    |

  7. If (1)/( x + y) = (1)/(x) + (1)/(y) ( x ne 0, y ne 0, x ne y) then t...

    Text Solution

    |

  8. If x = a ( b - c) , y = b ( c - a) z = c ( a - b) then the value of...

    Text Solution

    |

  9. If xy ( x + y) = 1 ,then the value of (1)/( x^(3) y^(3)) - x^(3) -...

    Text Solution

    |

  10. If x + y = z then the expression x^(3) + y^(3) - z^(3) + 3xyz will ...

    Text Solution

    |

  11. If a + (1)/(a) = sqrt(3) , then the value of a^(6) - (1)/(a^(6)) +...

    Text Solution

    |

  12. If x^(3) + y^(3) = 35 and x + y = 5 then the value of (1)/( x) + (...

    Text Solution

    |

  13. If ( a^(2) + b^(2))^(3) = (a^(3) + b^(3))^(2) then (a)/(b) + (b)/(a...

    Text Solution

    |

  14. If a+ b + c = 0 then the value of (a^(3) + b^(3) + c^(3))is

    Text Solution

    |

  15. If m^(4) + (1)/(m^(4)) = 119 then m - (1)/(m) = ?

    Text Solution

    |

  16. If x + y + z = 6 then the value of ( x - 1) ^(3) + ( y - 2) ^(3) + ...

    Text Solution

    |

  17. If x^(2) + 1 = 2 x then the value of (x^(4) +(1)/( x^(2)))/(x^(2) - 3...

    Text Solution

    |

  18. If x gt 1 and x ^(2) + (1)/(x^(2)) = 83 then x^(3) - (1)/( x^(3) i...

    Text Solution

    |

  19. If ( x )/( x^(2) - 2 x + 1 ) = (1)/( 3) then the value of x^(3) + (...

    Text Solution

    |

  20. If (1)/( p) + (1)/(q) = (1)/( p + q) then the value of (p^(3) + q^...

    Text Solution

    |