Home
Class 14
MATHS
If (1)/( x + y) = (1)/(x) + (1)/(y) ( ...

If ` (1)/( x + y) = (1)/(x) + (1)/(y) ( x ne 0, y ne 0, x ne y)` then the value of ` x^(3) - y^(3)` is

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{x+y} = \frac{1}{x} + \frac{1}{y} \), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ \frac{1}{x+y} = \frac{1}{x} + \frac{1}{y} \] ### Step 2: Find a common denominator on the right side The right side can be combined using the least common multiple (LCM) of \( x \) and \( y \): \[ \frac{1}{x} + \frac{1}{y} = \frac{y + x}{xy} = \frac{x+y}{xy} \] ### Step 3: Set the fractions equal Now we can equate the two sides: \[ \frac{1}{x+y} = \frac{x+y}{xy} \] ### Step 4: Cross-multiply Cross-multiply to eliminate the fractions: \[ 1 \cdot xy = (x+y)(x+y) \] This simplifies to: \[ xy = (x+y)^2 \] ### Step 5: Expand the right side Expanding the right side gives: \[ xy = x^2 + 2xy + y^2 \] ### Step 6: Rearrange the equation Rearranging the equation results in: \[ 0 = x^2 + y^2 + xy - xy \] This simplifies to: \[ x^2 + y^2 - xy = 0 \] ### Step 7: Recognize the identity The equation \( x^2 + y^2 - xy = 0 \) can be rewritten using the identity for the difference of cubes: \[ x^3 - y^3 = (x-y)(x^2 + xy + y^2) \] ### Step 8: Substitute the known values From our previous step, we know: \[ x^2 + y^2 = xy \] Thus: \[ x^2 + xy + y^2 = xy + xy = 2xy \] ### Step 9: Substitute back into the identity Now substituting back into the identity gives: \[ x^3 - y^3 = (x-y)(2xy) \] ### Step 10: Evaluate the expression Since \( x \neq y \), we can conclude that \( x - y \) is not zero. However, from our earlier equation \( x^2 + y^2 - xy = 0 \), we can also conclude that: \[ x^2 + y^2 = xy \implies 0 = 0 \] Thus, \( x^3 - y^3 = 0 \). ### Final Answer Therefore, the value of \( x^3 - y^3 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If (x)/(y)+(y)/(x)=-1 , where x,y ne 0 then the value of (x^3-y^3) is

( 9)/(x) - ( 4)/( y) = 8 , ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0, y ne 0 )

( 5)/(x) + 6y = 13, (3)/(x) + 4y = 7 ( x ne 0 )

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

(x)/(y)+(y)/(x)=-1(where,x,y!=0) then find the value of x^(3)-y^(3)

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

If (2)/(x) + (3)/(y) = (9)/( xy ) and (4)/(x) + (9)/(y) = (21)/(xy) where x ne 0 and y ne 0, that what is the value of x + y ?

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

x + ( 6) /( y ) = 6, 3x - ( 8)/( y) = 5 ( y ne 0 )

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If for two real constants a and b the expression ax ^(3) + 3x^(2) -...

    Text Solution

    |

  2. If x = 5 , y = 6 and z = - 11 , then the value of x^(3) + y^(3) + ...

    Text Solution

    |

  3. If (1)/( x + y) = (1)/(x) + (1)/(y) ( x ne 0, y ne 0, x ne y) then t...

    Text Solution

    |

  4. If x = a ( b - c) , y = b ( c - a) z = c ( a - b) then the value of...

    Text Solution

    |

  5. If xy ( x + y) = 1 ,then the value of (1)/( x^(3) y^(3)) - x^(3) -...

    Text Solution

    |

  6. If x + y = z then the expression x^(3) + y^(3) - z^(3) + 3xyz will ...

    Text Solution

    |

  7. If a + (1)/(a) = sqrt(3) , then the value of a^(6) - (1)/(a^(6)) +...

    Text Solution

    |

  8. If x^(3) + y^(3) = 35 and x + y = 5 then the value of (1)/( x) + (...

    Text Solution

    |

  9. If ( a^(2) + b^(2))^(3) = (a^(3) + b^(3))^(2) then (a)/(b) + (b)/(a...

    Text Solution

    |

  10. If a+ b + c = 0 then the value of (a^(3) + b^(3) + c^(3))is

    Text Solution

    |

  11. If m^(4) + (1)/(m^(4)) = 119 then m - (1)/(m) = ?

    Text Solution

    |

  12. If x + y + z = 6 then the value of ( x - 1) ^(3) + ( y - 2) ^(3) + ...

    Text Solution

    |

  13. If x^(2) + 1 = 2 x then the value of (x^(4) +(1)/( x^(2)))/(x^(2) - 3...

    Text Solution

    |

  14. If x gt 1 and x ^(2) + (1)/(x^(2)) = 83 then x^(3) - (1)/( x^(3) i...

    Text Solution

    |

  15. If ( x )/( x^(2) - 2 x + 1 ) = (1)/( 3) then the value of x^(3) + (...

    Text Solution

    |

  16. If (1)/( p) + (1)/(q) = (1)/( p + q) then the value of (p^(3) + q^...

    Text Solution

    |

  17. If x + y + z = 6 and x^(2) + y^(2)+ z^(2) = 20 then the value of x^...

    Text Solution

    |

  18. If x = 1 - sqrt(2) ,the value of ( x - (1)/( x))^(3)

    Text Solution

    |

  19. If ( x - a) ( x - b) = 1 and a - b + 5 = 0 , then the value of ( x -...

    Text Solution

    |

  20. If a^(2) + b^(2) + c^(2) = 2 (a - b - c) - 3 then the value of 4 ...

    Text Solution

    |