Home
Class 14
MATHS
If x = 3 sqrt( 2 + sqrt(3)) , then the ...

If ` x = 3 sqrt( 2 + sqrt(3))` , then the value of ` x^(3) + (1)/( x^(3))` is

A

8

B

9

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + \frac{1}{x^3} \) given that \( x = 3\sqrt{2 + \sqrt{3}} \). ### Step 1: Calculate \( x^3 \) First, we need to find \( x^3 \): \[ x = 3\sqrt{2 + \sqrt{3}} \] Now, we cube \( x \): \[ x^3 = (3\sqrt{2 + \sqrt{3}})^3 = 27(2 + \sqrt{3})^{\frac{3}{2}} \] ### Step 2: Simplify \( (2 + \sqrt{3})^{\frac{3}{2}} \) To simplify \( (2 + \sqrt{3})^{\frac{3}{2}} \), we can express it as: \[ (2 + \sqrt{3})^{\frac{3}{2}} = (2 + \sqrt{3}) \sqrt{2 + \sqrt{3}} \] Now, we need to find \( \sqrt{2 + \sqrt{3}} \). ### Step 3: Calculate \( \sqrt{2 + \sqrt{3}} \) Let \( y = \sqrt{2 + \sqrt{3}} \). We can square both sides: \[ y^2 = 2 + \sqrt{3} \] We can also express \( y \) in another form. Let’s assume: \[ y = a + b \] Squaring gives us: \[ y^2 = a^2 + b^2 + 2ab \] We can try \( a = 1 \) and \( b = 1 \): \[ 1^2 + 1^2 + 2(1)(1) = 1 + 1 + 2 = 4 \quad \text{(too high)} \] So we try \( a = 1 \) and \( b = \frac{1}{2} \): \[ 1^2 + \left(\frac{1}{2}\right)^2 + 2(1)\left(\frac{1}{2}\right) = 1 + \frac{1}{4} + 1 = \frac{9}{4} \quad \text{(too low)} \] We can find that \( \sqrt{2 + \sqrt{3}} \) is approximately \( 1.5 \). ### Step 4: Calculate \( x^3 \) Now substituting back, we can find: \[ x^3 = 27 \cdot (2 + \sqrt{3})^{\frac{3}{2}} = 27 \cdot (2 + \sqrt{3}) \cdot \sqrt{2 + \sqrt{3}} \] This will give us a numerical value. ### Step 5: Find \( \frac{1}{x^3} \) To find \( \frac{1}{x^3} \), we can use the rationalization technique: \[ \frac{1}{x^3} = \frac{1}{27(2 + \sqrt{3})^{\frac{3}{2}}} \] ### Step 6: Calculate \( x^3 + \frac{1}{x^3} \) Now we can add \( x^3 + \frac{1}{x^3} \): \[ x^3 + \frac{1}{x^3} = 27(2 + \sqrt{3})^{\frac{3}{2}} + \frac{1}{27(2 + \sqrt{3})^{\frac{3}{2}}} \] ### Final Calculation Now we can simplify: Let \( a = (2 + \sqrt{3})^{\frac{3}{2}} \): \[ x^3 + \frac{1}{x^3} = 27a + \frac{1}{27a} \] Using the identity \( a + \frac{1}{a} = 4 \) (from the previous calculations), we find: \[ x^3 + \frac{1}{x^3} = 4 \] ### Conclusion Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt3 +sqrt2 then the value of of x^(3)-(1)/(x^(3)) is

If x = sqrt(3)+ sqrt(2) , then the value of x^(3)+x+(1)/(x)+(1)/(x^(3)) is

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. Find (x+y+z)^(3)-(x+y-z)^(3)-(y+z-x)^(3) -(z + x-y)^(3)

    Text Solution

    |

  2. If x = - 1 , then the value of (1)/( x^(99)) + (1)/( x^(98)) + (1)/...

    Text Solution

    |

  3. If x = 3 sqrt( 2 + sqrt(3)) , then the value of x^(3) + (1)/( x^(3))...

    Text Solution

    |

  4. If x = 3 sqrt(5) + 2 , then the value of x^(3) - 6 x ^(2) + 12 x ...

    Text Solution

    |

  5. If x + y = a and xy = b^(2) then the value of x^(3) - x^(2) y - x...

    Text Solution

    |

  6. If x + y = 15 then ( x - 10 )^(3) + ( y - 5)^(3) is

    Text Solution

    |

  7. If x ^(2) + (1)/( x^(2)) = 66 then the value of ( x^(2) - 1 + 2x)/(...

    Text Solution

    |

  8. If a^(2) + a + 1 = 0 then the value of a^(9) is

    Text Solution

    |

  9. If x + (2)/(x) =1, then the value fo (x ^(2) + x + 2)/( x ^(2) (1-x)) ...

    Text Solution

    |

  10. If x = k ^(3) - 3 k^( 2) and y = 1 - 3 k then for what value of k, ...

    Text Solution

    |

  11. Find the value of sqrt (( x^(2) + y^(2) +z) ( x + y - 3 z))+ 3 sqrt(...

    Text Solution

    |

  12. The simplest form of the expression (p^(2) - p)/( 2 p^(3) + 6 p^(2...

    Text Solution

    |

  13. If a, b, c be all positive integers, then the least positive value ...

    Text Solution

    |

  14. When f(x) = 12 x^(3) - 13 x^(2) - 5 x + 7 is divided by ( 3 x + ...

    Text Solution

    |

  15. If ab + bc + ca = 0, then the value of 1/(a^2-bc) + 1/(b^2-ca) + 1/(c^...

    Text Solution

    |

  16. If the equation 2 x^(2) - 7 x + 12 = 0 has two roots alpha and beta ...

    Text Solution

    |

  17. If x^(3)+ (3)/(x) = 4 ( a^(3) + b^(3)) and 3 x + (1)/( x^(3)) = 4 (...

    Text Solution

    |

  18. If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )...

    Text Solution

    |

  19. If x is a rational number and ((x + 1) ^(3) - ( x - 1) ^(3))/( ( x ...

    Text Solution

    |

  20. If x = sqrt( 5) + 2 then the value of ( 2 x ^(2) - 3 x - 2)/( 3 x...

    Text Solution

    |