Home
Class 14
MATHS
If the equation 2 x^(2) - 7 x + 12 = 0 ...

If the equation ` 2 x^(2) - 7 x + 12 = 0` has two roots ` alpha and beta ` then the value of ` (alpha)/( beta) + (beta)/( alpha)` is

A

`(7)/(2)`

B

`(1)/(24)`

C

`(7)/(24)`

D

`(97)/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2x^2 - 7x + 12 = 0 \) and find the value of \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \), where \( \alpha \) and \( \beta \) are the roots of the equation, we can follow these steps: ### Step 1: Identify the coefficients The given quadratic equation is in the standard form \( ax^2 + bx + c = 0 \), where: - \( a = 2 \) - \( b = -7 \) - \( c = 12 \) ### Step 2: Use Vieta's formulas According to Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) Calculating these values: - \( \alpha + \beta = -\frac{-7}{2} = \frac{7}{2} \) - \( \alpha \beta = \frac{12}{2} = 6 \) ### Step 3: Find \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \) We can express \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \) in terms of \( \alpha + \beta \) and \( \alpha \beta \): \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} \] ### Step 4: Calculate \( \alpha^2 + \beta^2 \) Using the identity \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): \[ \alpha^2 + \beta^2 = \left(\frac{7}{2}\right)^2 - 2 \times 6 \] Calculating \( \left(\frac{7}{2}\right)^2 \): \[ \left(\frac{7}{2}\right)^2 = \frac{49}{4} \] Calculating \( 2 \times 6 = 12 \) (which can be expressed with a common denominator): \[ 12 = \frac{48}{4} \] Now substituting back: \[ \alpha^2 + \beta^2 = \frac{49}{4} - \frac{48}{4} = \frac{1}{4} \] ### Step 5: Substitute into the expression Now substituting \( \alpha^2 + \beta^2 \) and \( \alpha \beta \) into the expression: \[ \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{\frac{1}{4}}{6} = \frac{1}{4} \times \frac{1}{6} = \frac{1}{24} \] ### Final Answer Thus, the value of \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \) is \( \frac{1}{24} \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If the equation x^(2) + kx+ 1 = 0 " has the roots "alpha and beta , then what is the value of (alpha + beta) xx ( alpha^(-1) +beta ^(-1))

If the equation 3x^(2) - 2x-3 = 0 has roots alpha , and beta then alpha.beta = "______" .

If the equation x^(2)+2x+5=0 has two roots alpha and beta then the equation whose roots are alpha+(1)/(alpha) and beta+(1)/(beta) is

Consider the equation x^2-5x+2=0 with roots alpha, beta , then the value of alpha+beta+alpha^(-1)+beta^(-1)=?

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

If alpha, beta are roots of the equation x^(2) + x + 1 = 0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , is

alpha,beta are roots of the equation lambda(x^(2)-x)+x+5=0. If lambda_(1) and lambd_(2) are the two values of (alpha)/(beta)+(beta)/(alpha)=4 for which the roots

Two roots of equation of 2x^(2)-7x+12=0 are alpha " &" beta then find (alpha)/(beta) + (beta)/(alpha)= ?

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. When f(x) = 12 x^(3) - 13 x^(2) - 5 x + 7 is divided by ( 3 x + ...

    Text Solution

    |

  2. If ab + bc + ca = 0, then the value of 1/(a^2-bc) + 1/(b^2-ca) + 1/(c^...

    Text Solution

    |

  3. If the equation 2 x^(2) - 7 x + 12 = 0 has two roots alpha and beta ...

    Text Solution

    |

  4. If x^(3)+ (3)/(x) = 4 ( a^(3) + b^(3)) and 3 x + (1)/( x^(3)) = 4 (...

    Text Solution

    |

  5. If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )...

    Text Solution

    |

  6. If x is a rational number and ((x + 1) ^(3) - ( x - 1) ^(3))/( ( x ...

    Text Solution

    |

  7. If x = sqrt( 5) + 2 then the value of ( 2 x ^(2) - 3 x - 2)/( 3 x...

    Text Solution

    |

  8. If x^(2) + y^(2) + 1 = 2x then the value of x^(3) + y^(5) is

    Text Solution

    |

  9. If 3 (a ^(2) + b ^(2) + c ^(2)) = (a + b + c) ^(2), then the relation ...

    Text Solution

    |

  10. If x ( x - 3) = - 1 then the value of x^(3) ( x^(3) - 18) is

    Text Solution

    |

  11. If a ( a + b + c) = 45 , b ( a + b + c) = 75 and c (a + b + c) = 105 ...

    Text Solution

    |

  12. The factors of ( a^(2) + 4b ^(2) + 4b - 4ab - 2 a - 8) are

    Text Solution

    |

  13. The value of (1)/( a^(2) + ax + x^(2)) - (1)/( a^(2) - ax + x^(2)) + ...

    Text Solution

    |

  14. If x=11, the value of x ^(5) - 12 x ^(4) + 12 x ^(3) - 12 x ^(2) + 12 ...

    Text Solution

    |

  15. an example of an equality relation of two expressions in x, which of...

    Text Solution

    |

  16. The numerical value of (( a - b)^(2))/( ( b - c) ( c - a)) + (( b - c...

    Text Solution

    |

  17. If 6 x ^(2) - 12 x + 1 = 0 then the value of 27 x^(3) + (1)/( 8 x^(...

    Text Solution

    |

  18. If x = p + (1)/(p) and y = p - (1)/( p) then the value of x^(4) - 2...

    Text Solution

    |

  19. If a + b + c = 0 then the value of ( a + b - c )^(2) + ( b + c - ...

    Text Solution

    |

  20. If p^(3) + 3 p^(2) + 3p = 7 then the value of p^(2) + 2 p is

    Text Solution

    |