Home
Class 14
MATHS
If x is a rational number and ((x + 1)...

If x is a rational number and `((x + 1) ^(3) - ( x - 1) ^(3))/( ( x + 1)^(2) - ( x - 1) ^(2)) = 2 ` then the sum of numerator and denominator of x is

A

3

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(x + 1)^3 - (x - 1)^3}{(x + 1)^2 - (x - 1)^2} = 2, \] we will simplify both the numerator and the denominator step by step. ### Step 1: Simplify the Numerator The numerator is \((x + 1)^3 - (x - 1)^3\). We can use the difference of cubes formula, which states that \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\). Let \(a = x + 1\) and \(b = x - 1\). Then, we have: \[ a - b = (x + 1) - (x - 1) = 2. \] Now we need to calculate \(a^2 + ab + b^2\): \[ a^2 = (x + 1)^2 = x^2 + 2x + 1, \] \[ b^2 = (x - 1)^2 = x^2 - 2x + 1, \] \[ ab = (x + 1)(x - 1) = x^2 - 1. \] Now, adding these together: \[ a^2 + ab + b^2 = (x^2 + 2x + 1) + (x^2 - 1) + (x^2 - 2x + 1) = 3x^2 + 1. \] So, the numerator simplifies to: \[ (x + 1)^3 - (x - 1)^3 = 2(3x^2 + 1) = 6x^2 + 2. \] ### Step 2: Simplify the Denominator The denominator is \((x + 1)^2 - (x - 1)^2\). We can use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\). Let \(a = (x + 1)\) and \(b = (x - 1)\): \[ a - b = (x + 1) - (x - 1) = 2, \] \[ a + b = (x + 1) + (x - 1) = 2x. \] Thus, the denominator simplifies to: \[ (x + 1)^2 - (x - 1)^2 = 2(2x) = 4x. \] ### Step 3: Substitute Back into the Equation Now we can substitute the simplified numerator and denominator back into the equation: \[ \frac{6x^2 + 2}{4x} = 2. \] ### Step 4: Cross Multiply Cross multiplying gives us: \[ 6x^2 + 2 = 8x. \] ### Step 5: Rearranging the Equation Rearranging this equation gives us: \[ 6x^2 - 8x + 2 = 0. \] ### Step 6: Simplifying the Quadratic Equation We can simplify this equation by dividing everything by 2: \[ 3x^2 - 4x + 1 = 0. \] ### Step 7: Solving the Quadratic Equation Now we can use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 3\), \(b = -4\), and \(c = 1\): \[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm \sqrt{4}}{6} = \frac{4 \pm 2}{6}. \] This gives us two solutions: 1. \(x = \frac{6}{6} = 1\) 2. \(x = \frac{2}{6} = \frac{1}{3}\) ### Step 8: Finding the Sum of the Numerator and Denominator of \(x\) Now we need to find the sum of the numerator and denominator of \(x\) for each solution: For \(x = 1\): - Numerator = 1, Denominator = 1 → Sum = \(1 + 1 = 2\). For \(x = \frac{1}{3}\): - Numerator = 1, Denominator = 3 → Sum = \(1 + 3 = 4\). Thus, the possible sums are 2 and 4. ### Final Answer The sum of the numerator and denominator of \(x\) can be either 2 or 4. ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

Rationalize the numerator of (2-sqrt(3+x))/(x-1)

Find the sum of the series e^(x-(1)/(2)(x -1)^(2) + (1)/(3) (x -1)^(3) - (1)/(4) (x -1)^(4) + ...

If x = (2)/(3) and y = (3)/(4), then a rational number (x – y) ^(-1) + (x ^(-1) – y ^(-1)) is equal to

((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))=

If (x^2-1)^(3)-(2x-1)^(3)=x^(3)(x-2)^3 then sum of all roots of the equation is

If (x^(3)+x^(2)+x+1)/(x^(3)-x^(2)+x-1)=(x^(2)+x+1)/(x^(2)-x+1), then the number of real value of x satisfying are

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If x^(3)+ (3)/(x) = 4 ( a^(3) + b^(3)) and 3 x + (1)/( x^(3)) = 4 (...

    Text Solution

    |

  2. If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )...

    Text Solution

    |

  3. If x is a rational number and ((x + 1) ^(3) - ( x - 1) ^(3))/( ( x ...

    Text Solution

    |

  4. If x = sqrt( 5) + 2 then the value of ( 2 x ^(2) - 3 x - 2)/( 3 x...

    Text Solution

    |

  5. If x^(2) + y^(2) + 1 = 2x then the value of x^(3) + y^(5) is

    Text Solution

    |

  6. If 3 (a ^(2) + b ^(2) + c ^(2)) = (a + b + c) ^(2), then the relation ...

    Text Solution

    |

  7. If x ( x - 3) = - 1 then the value of x^(3) ( x^(3) - 18) is

    Text Solution

    |

  8. If a ( a + b + c) = 45 , b ( a + b + c) = 75 and c (a + b + c) = 105 ...

    Text Solution

    |

  9. The factors of ( a^(2) + 4b ^(2) + 4b - 4ab - 2 a - 8) are

    Text Solution

    |

  10. The value of (1)/( a^(2) + ax + x^(2)) - (1)/( a^(2) - ax + x^(2)) + ...

    Text Solution

    |

  11. If x=11, the value of x ^(5) - 12 x ^(4) + 12 x ^(3) - 12 x ^(2) + 12 ...

    Text Solution

    |

  12. an example of an equality relation of two expressions in x, which of...

    Text Solution

    |

  13. The numerical value of (( a - b)^(2))/( ( b - c) ( c - a)) + (( b - c...

    Text Solution

    |

  14. If 6 x ^(2) - 12 x + 1 = 0 then the value of 27 x^(3) + (1)/( 8 x^(...

    Text Solution

    |

  15. If x = p + (1)/(p) and y = p - (1)/( p) then the value of x^(4) - 2...

    Text Solution

    |

  16. If a + b + c = 0 then the value of ( a + b - c )^(2) + ( b + c - ...

    Text Solution

    |

  17. If p^(3) + 3 p^(2) + 3p = 7 then the value of p^(2) + 2 p is

    Text Solution

    |

  18. If x = y + z then x^(3) - y^(3) - z^(3) is

    Text Solution

    |

  19. If 3 a ^(2) = b^(2) ne 0 then the value of (( a + b) ^(3) - ( a - ...

    Text Solution

    |

  20. The value of ( 4 x ^(3) - x)/( ( 2 x + 1) ( 6 x - 3)) when x = 9999 i...

    Text Solution

    |