Home
Class 14
MATHS
The value of (1)/( a^(2) + ax + x^(2)) ...

The value of `(1)/( a^(2) + ax + x^(2)) - (1)/( a^(2) - ax + x^(2)) + ( 2ax)/( a^(4) + a^(2) x^(2) + x^(4))` is

A

2

B

1

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{a^2 + ax + x^2} - \frac{1}{a^2 - ax + x^2} + \frac{2ax}{a^4 + a^2x^2 + x^4}, \] we will simplify it step by step. ### Step 1: Find a common denominator for the first two fractions The common denominator for the first two fractions is \[ (a^2 + ax + x^2)(a^2 - ax + x^2). \] ### Step 2: Rewrite the first two fractions with the common denominator We rewrite the first two fractions as: \[ \frac{(a^2 - ax + x^2) - (a^2 + ax + x^2)}{(a^2 + ax + x^2)(a^2 - ax + x^2)}. \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ (a^2 - ax + x^2) - (a^2 + ax + x^2) = -2ax. \] So, we have: \[ \frac{-2ax}{(a^2 + ax + x^2)(a^2 - ax + x^2)}. \] ### Step 4: Add the third term Now, we need to add the third term: \[ \frac{-2ax}{(a^2 + ax + x^2)(a^2 - ax + x^2)} + \frac{2ax}{a^4 + a^2x^2 + x^4}. \] ### Step 5: Find a common denominator for all three terms The common denominator for all three fractions is \[ (a^2 + ax + x^2)(a^2 - ax + x^2)(a^4 + a^2x^2 + x^4). \] ### Step 6: Rewrite all fractions with the common denominator The first term becomes: \[ \frac{-2ax(a^4 + a^2x^2 + x^4)}{(a^2 + ax + x^2)(a^2 - ax + x^2)(a^4 + a^2x^2 + x^4)}. \] The second term becomes: \[ \frac{2ax(a^2 + ax + x^2)(a^2 - ax + x^2)}{(a^2 + ax + x^2)(a^2 - ax + x^2)(a^4 + a^2x^2 + x^4)}. \] ### Step 7: Combine the fractions Now we can combine the two fractions: \[ \frac{-2ax(a^4 + a^2x^2 + x^4) + 2ax(a^2 + ax + x^2)(a^2 - ax + x^2)}{(a^2 + ax + x^2)(a^2 - ax + x^2)(a^4 + a^2x^2 + x^4)}. \] ### Step 8: Simplify the numerator Factor out \(2ax\) from the numerator: \[ \frac{2ax\left[-(a^4 + a^2x^2 + x^4) + (a^2 + ax + x^2)(a^2 - ax + x^2)\right]}{(a^2 + ax + x^2)(a^2 - ax + x^2)(a^4 + a^2x^2 + x^4)}. \] ### Step 9: Expand and simplify the expression inside the brackets Now, we need to simplify the expression inside the brackets. When you expand \((a^2 + ax + x^2)(a^2 - ax + x^2)\), you will find that it simplifies to \(a^4 + a^2x^2 + x^4\). Thus, \[ -(a^4 + a^2x^2 + x^4) + (a^4 + a^2x^2 + x^4) = 0. \] ### Final Result This means that the entire expression simplifies to: \[ \frac{0}{(a^2 + ax + x^2)(a^2 - ax + x^2)(a^4 + a^2x^2 + x^4)} = 0. \] ### Conclusion Therefore, the value of the given expression is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If 4x + 3a = 0 , then what is the value of (x^(2) + ax + a^(2))/(x^(3) - a^(3)) -(x^(2) -ax + a^(2))/(x^(3) + a^(3)) ?

lim_ (x rarr a / 2) (8x ^ (2) -10ax + 3a ^ (2)) / (4x ^ (2) + 4ax-3a ^ (2))

int (2x-1) / (4x ^ (2)) e ^ (2x) dx212ax

The value of (ax^(1//4) + 3a^(1//2)x^(1//2) + 4x^(3//4))(a - 3a^(1//2)x^(1//4) + 4x^(1//2)) is :

If 4x ^(2) + 12 xy - 8x + 9 y ^(2) - 12 y = (ax + by) (ax+ by -4), then the value of a ^(2) +b ^(2) is

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If a ( a + b + c) = 45 , b ( a + b + c) = 75 and c (a + b + c) = 105 ...

    Text Solution

    |

  2. The factors of ( a^(2) + 4b ^(2) + 4b - 4ab - 2 a - 8) are

    Text Solution

    |

  3. The value of (1)/( a^(2) + ax + x^(2)) - (1)/( a^(2) - ax + x^(2)) + ...

    Text Solution

    |

  4. If x=11, the value of x ^(5) - 12 x ^(4) + 12 x ^(3) - 12 x ^(2) + 12 ...

    Text Solution

    |

  5. an example of an equality relation of two expressions in x, which of...

    Text Solution

    |

  6. The numerical value of (( a - b)^(2))/( ( b - c) ( c - a)) + (( b - c...

    Text Solution

    |

  7. If 6 x ^(2) - 12 x + 1 = 0 then the value of 27 x^(3) + (1)/( 8 x^(...

    Text Solution

    |

  8. If x = p + (1)/(p) and y = p - (1)/( p) then the value of x^(4) - 2...

    Text Solution

    |

  9. If a + b + c = 0 then the value of ( a + b - c )^(2) + ( b + c - ...

    Text Solution

    |

  10. If p^(3) + 3 p^(2) + 3p = 7 then the value of p^(2) + 2 p is

    Text Solution

    |

  11. If x = y + z then x^(3) - y^(3) - z^(3) is

    Text Solution

    |

  12. If 3 a ^(2) = b^(2) ne 0 then the value of (( a + b) ^(3) - ( a - ...

    Text Solution

    |

  13. The value of ( 4 x ^(3) - x)/( ( 2 x + 1) ( 6 x - 3)) when x = 9999 i...

    Text Solution

    |

  14. If a^(3) + b^(3) = 9 and a + b = 3 then the value of (1)/( a) + (...

    Text Solution

    |

  15. If t^(2) - 4 t + 1 = 0 then the value of t^(3) + (1)/( t^(3)) is

    Text Solution

    |

  16. If 3 sqrt( a) + 3 sqrt( b) = 3 sqrt( c) , then the simplest value of...

    Text Solution

    |

  17. If P = (5)/(18), then 27 p ^(3) - (1)/(216) - (9)/(2) P ^(2) + (1)/(4)...

    Text Solution

    |

  18. If x + (1)/( x) = 2 " then " x^( 2013) + (1)/( x^(2014)) = ?

    Text Solution

    |

  19. If a = 331 , b = 336 and c = - 667 then the value of a^(3) + b^(3)...

    Text Solution

    |

  20. If x^(3) + 2x ^(2) - 5 x + k is divisible by x + 1 then what is t...

    Text Solution

    |