Home
Class 14
MATHS
If 6 x ^(2) - 12 x + 1 = 0 then the va...

If ` 6 x ^(2) - 12 x + 1 = 0 ` then the value of ` 27 x^(3) + (1)/( 8 x^(3))` is

A

162

B

189

C

207

D

225

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 6x^2 - 12x + 1 = 0 \) and find the value of \( 27x^3 + \frac{1}{8x^3} \), we can follow these steps: ### Step 1: Simplify the original equation We start with the equation: \[ 6x^2 - 12x + 1 = 0 \] We can divide the entire equation by 2 to simplify it: \[ 3x^2 - 6x + \frac{1}{2} = 0 \] ### Step 2: Express \( 3x + \frac{1}{2x} \) We can rearrange the equation to express \( 3x + \frac{1}{2x} \): \[ 3x + \frac{1}{2x} = 6 \] ### Step 3: Identify \( a \) and \( b \) Let: \[ a = 3x \quad \text{and} \quad b = \frac{1}{2x} \] Then, we need to find \( a^3 + b^3 \). ### Step 4: Use the identity for cubes We can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] First, we calculate \( a + b \): \[ a + b = 3x + \frac{1}{2x} = 6 \] ### Step 5: Calculate \( ab \) Next, we calculate \( ab \): \[ ab = 3x \cdot \frac{1}{2x} = \frac{3}{2} \] ### Step 6: Calculate \( a^2 + b^2 \) Now, we need \( a^2 + b^2 \): \[ a^2 + b^2 = (a + b)^2 - 2ab = 6^2 - 2 \cdot \frac{3}{2} = 36 - 3 = 33 \] ### Step 7: Substitute into the identity Now we can substitute into the identity: \[ a^3 + b^3 = (a + b)((a^2 + b^2) - ab) = 6(33 - \frac{3}{2}) = 6 \left( \frac{66 - 3}{2} \right) = 6 \cdot \frac{63}{2} = \frac{378}{2} = 189 \] ### Conclusion Thus, the value of \( 27x^3 + \frac{1}{8x^3} \) is: \[ \boxed{189} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If x^2 - 3x + 1 = 0 , then the value of (x^6 + x^4 + x^2 + 1)/(x^3) will be

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. an example of an equality relation of two expressions in x, which of...

    Text Solution

    |

  2. The numerical value of (( a - b)^(2))/( ( b - c) ( c - a)) + (( b - c...

    Text Solution

    |

  3. If 6 x ^(2) - 12 x + 1 = 0 then the value of 27 x^(3) + (1)/( 8 x^(...

    Text Solution

    |

  4. If x = p + (1)/(p) and y = p - (1)/( p) then the value of x^(4) - 2...

    Text Solution

    |

  5. If a + b + c = 0 then the value of ( a + b - c )^(2) + ( b + c - ...

    Text Solution

    |

  6. If p^(3) + 3 p^(2) + 3p = 7 then the value of p^(2) + 2 p is

    Text Solution

    |

  7. If x = y + z then x^(3) - y^(3) - z^(3) is

    Text Solution

    |

  8. If 3 a ^(2) = b^(2) ne 0 then the value of (( a + b) ^(3) - ( a - ...

    Text Solution

    |

  9. The value of ( 4 x ^(3) - x)/( ( 2 x + 1) ( 6 x - 3)) when x = 9999 i...

    Text Solution

    |

  10. If a^(3) + b^(3) = 9 and a + b = 3 then the value of (1)/( a) + (...

    Text Solution

    |

  11. If t^(2) - 4 t + 1 = 0 then the value of t^(3) + (1)/( t^(3)) is

    Text Solution

    |

  12. If 3 sqrt( a) + 3 sqrt( b) = 3 sqrt( c) , then the simplest value of...

    Text Solution

    |

  13. If P = (5)/(18), then 27 p ^(3) - (1)/(216) - (9)/(2) P ^(2) + (1)/(4)...

    Text Solution

    |

  14. If x + (1)/( x) = 2 " then " x^( 2013) + (1)/( x^(2014)) = ?

    Text Solution

    |

  15. If a = 331 , b = 336 and c = - 667 then the value of a^(3) + b^(3)...

    Text Solution

    |

  16. If x^(3) + 2x ^(2) - 5 x + k is divisible by x + 1 then what is t...

    Text Solution

    |

  17. If x + y + z = 0 ,then the value of ( x^(2) + y^(2) + z^(2))/( x...

    Text Solution

    |

  18. If x^(4) + (1)/( x^(4)) = 119 then the values of x^(3) + (1)/( x^(3)...

    Text Solution

    |

  19. If m + n = - 2 then the value of m^(3) + n^(3) - 6 mn is

    Text Solution

    |

  20. If U(n) = (1)/( n) - (1)/( n + 1) , then the value of U(1) + U(2) + ...

    Text Solution

    |