Home
Class 14
MATHS
If t^(2) - 4 t + 1 = 0 then the value...

If ` t^(2) - 4 t + 1 = 0` then the value of ` t^(3) + (1)/( t^(3))` is

A

44

B

48

C

52

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( t^2 - 4t + 1 = 0 \) and find the value of \( t^3 + \frac{1}{t^3} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ t^2 - 4t + 1 = 0 \] We can use the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -4 \), and \( c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 1 = 16 - 4 = 12 \] Now substituting into the quadratic formula: \[ t = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \] Thus, the two possible values for \( t \) are: \[ t_1 = 2 + \sqrt{3} \quad \text{and} \quad t_2 = 2 - \sqrt{3} \] ### Step 2: Find \( t^3 \) We can express \( t^3 \) in terms of \( t \) using the original equation. From \( t^2 = 4t - 1 \), we can multiply both sides by \( t \): \[ t^3 = t \cdot t^2 = t(4t - 1) = 4t^2 - t \] Now substituting \( t^2 \) back in: \[ t^3 = 4(4t - 1) - t = 16t - 4 - t = 15t - 4 \] ### Step 3: Find \( t^3 + \frac{1}{t^3} \) To find \( \frac{1}{t^3} \), we can use the identity: \[ \frac{1}{t^3} = \frac{1}{15t - 4} \] Now we need to compute \( t^3 + \frac{1}{t^3} \): \[ t^3 + \frac{1}{t^3} = (15t - 4) + \frac{1}{15t - 4} \] To simplify this expression, we can find a common denominator: \[ = \frac{(15t - 4)^2 + 1}{15t - 4} \] Calculating \( (15t - 4)^2 + 1 \): \[ (15t - 4)^2 = 225t^2 - 120t + 16 \] Since \( t^2 = 4t - 1 \): \[ 225(4t - 1) - 120t + 16 = 900t - 225 - 120t + 16 = 780t - 209 \] Thus, \[ t^3 + \frac{1}{t^3} = \frac{780t - 209 + 1}{15t - 4} = \frac{780t - 208}{15t - 4} \] ### Step 4: Substitute \( t = 2 + \sqrt{3} \) or \( t = 2 - \sqrt{3} \) We can substitute either value of \( t \) into our expression. Let's use \( t = 2 + \sqrt{3} \): \[ t^3 = 15(2 + \sqrt{3}) - 4 = 30 + 15\sqrt{3} - 4 = 26 + 15\sqrt{3} \] Now, we can find \( \frac{1}{t^3} \): \[ \frac{1}{t^3} = \frac{1}{26 + 15\sqrt{3}} \] To rationalize the denominator: \[ \frac{1}{t^3} = \frac{26 - 15\sqrt{3}}{(26 + 15\sqrt{3})(26 - 15\sqrt{3})} = \frac{26 - 15\sqrt{3}}{676 - 675} = 26 - 15\sqrt{3} \] ### Step 5: Combine \( t^3 \) and \( \frac{1}{t^3} \) Now we can add: \[ t^3 + \frac{1}{t^3} = (26 + 15\sqrt{3}) + (26 - 15\sqrt{3}) = 52 \] Thus, the final answer is: \[ \boxed{52} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If t+(1)/(t)=8 ,find the value of t^(3)+(1)/(t^(3)) .

The value of (T_(3))/(T_(1)) is

If v = 3t^2 - 2t + 1 , find the value of t for which (dv)/(dt) = 0

If 3(t-3) = 5(2t + 1) , then t = ?

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If s=(t^(3))/(3)-(1)/(2)t^(2)-6t+5 , Find the value of (d^(2)s)/(dt^(2)) at t=1

The least value of g(t) = 8t- t^(4) on [-2, 1] is

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. The value of ( 4 x ^(3) - x)/( ( 2 x + 1) ( 6 x - 3)) when x = 9999 i...

    Text Solution

    |

  2. If a^(3) + b^(3) = 9 and a + b = 3 then the value of (1)/( a) + (...

    Text Solution

    |

  3. If t^(2) - 4 t + 1 = 0 then the value of t^(3) + (1)/( t^(3)) is

    Text Solution

    |

  4. If 3 sqrt( a) + 3 sqrt( b) = 3 sqrt( c) , then the simplest value of...

    Text Solution

    |

  5. If P = (5)/(18), then 27 p ^(3) - (1)/(216) - (9)/(2) P ^(2) + (1)/(4)...

    Text Solution

    |

  6. If x + (1)/( x) = 2 " then " x^( 2013) + (1)/( x^(2014)) = ?

    Text Solution

    |

  7. If a = 331 , b = 336 and c = - 667 then the value of a^(3) + b^(3)...

    Text Solution

    |

  8. If x^(3) + 2x ^(2) - 5 x + k is divisible by x + 1 then what is t...

    Text Solution

    |

  9. If x + y + z = 0 ,then the value of ( x^(2) + y^(2) + z^(2))/( x...

    Text Solution

    |

  10. If x^(4) + (1)/( x^(4)) = 119 then the values of x^(3) + (1)/( x^(3)...

    Text Solution

    |

  11. If m + n = - 2 then the value of m^(3) + n^(3) - 6 mn is

    Text Solution

    |

  12. If U(n) = (1)/( n) - (1)/( n + 1) , then the value of U(1) + U(2) + ...

    Text Solution

    |

  13. If x = 5 , y = 6 and z = - 11 , then the value of x^(3) + y^(3) + ...

    Text Solution

    |

  14. If ( x+ (1)/( x)) = 3 then ( x^(8) + (1)/( x^(8))) is equal to

    Text Solution

    |

  15. If average of two numbers, x and (1)/(x) (where x ne 0 ) is A ,wha...

    Text Solution

    |

  16. If a = 2 + sqrt3, then the value of (a ^(6) + a ^(4) + a ^(2) + 1)/(a ...

    Text Solution

    |

  17. If x = sqrt(5) + sqrt(3) and y = sqrt( 5) - sqrt(3) , then value of ...

    Text Solution

    |

  18. If x + y + z = 6 then the value of ( x - 1) ^(3) + ( y - 2) ^(3) + ...

    Text Solution

    |

  19. If p^(4) = 119 - (1)/( p^(4)) then the value of p^(3) - (1)/( p^(3))...

    Text Solution

    |

  20. If m + ((1)/( m)) = 2 then the value of m^(3) - 3 m^(3) + 3 m + 3 n...

    Text Solution

    |