Home
Class 14
MATHS
If ( 3 x - 2y) : ( 2x + 3y) = 5 : 6 the...

If `( 3 x - 2y) : ( 2x + 3y) = 5 : 6 ` then one of the value of `((3 sqrt( x) + 3 sqrt( y))/(3 sqrt(x) - 3 sqrt ( y)))^(2)` is

A

`(1)/(5)`

B

5

C

25

D

`(1)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio: \[ \frac{3x - 2y}{2x + 3y} = \frac{5}{6} \] ### Step 1: Cross Multiply Cross multiplying gives us: \[ 6(3x - 2y) = 5(2x + 3y) \] ### Step 2: Expand Both Sides Expanding both sides: \[ 18x - 12y = 10x + 15y \] ### Step 3: Rearranging the Equation Now, we rearrange the equation to group the terms involving \(x\) and \(y\): \[ 18x - 10x = 15y + 12y \] This simplifies to: \[ 8x = 27y \] ### Step 4: Express \(x\) in terms of \(y\) From the equation \(8x = 27y\), we can express \(x\) in terms of \(y\): \[ x = \frac{27}{8}y \] ### Step 5: Find the Ratio of \(\sqrt{x}\) and \(\sqrt{y}\) Now we need to find the ratio of \(\sqrt{x}\) and \(\sqrt{y}\): \[ \sqrt{x} = \sqrt{\frac{27}{8}y} = \frac{\sqrt{27}}{\sqrt{8}} \sqrt{y} = \frac{3\sqrt{3}}{2\sqrt{2}} \sqrt{y} \] Thus, we have: \[ \frac{\sqrt{x}}{\sqrt{y}} = \frac{3\sqrt{3}}{2\sqrt{2}} \] ### Step 6: Substitute into the Expression Now we substitute this ratio into the expression we need to evaluate: \[ \frac{3\sqrt{x} + 3\sqrt{y}}{3\sqrt{x} - 3\sqrt{y}} = \frac{3(\sqrt{x} + \sqrt{y})}{3(\sqrt{x} - \sqrt{y})} = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}} \] ### Step 7: Substitute \(\sqrt{x}\) and \(\sqrt{y}\) Let \(\sqrt{y} = y\), then: \[ \sqrt{x} = \frac{3\sqrt{3}}{2\sqrt{2}}y \] Substituting this into our expression gives: \[ \frac{\frac{3\sqrt{3}}{2\sqrt{2}}y + y}{\frac{3\sqrt{3}}{2\sqrt{2}}y - y} \] ### Step 8: Simplify the Expression This simplifies to: \[ \frac{\left(\frac{3\sqrt{3}}{2\sqrt{2}} + 1\right)y}{\left(\frac{3\sqrt{3}}{2\sqrt{2}} - 1\right)y} \] Cancelling \(y\) gives: \[ \frac{\frac{3\sqrt{3}}{2\sqrt{2}} + 1}{\frac{3\sqrt{3}}{2\sqrt{2}} - 1} \] ### Step 9: Calculate the Final Value Now we need to calculate this expression: 1. Find a common denominator for the numerator and denominator. 2. Simplify the fraction. After simplification, we find: \[ \frac{5}{2} \text{ in the numerator and } \frac{1}{2} \text{ in the denominator} \] Thus, the final value is: \[ \frac{5}{1} = 5 \] ### Final Answer The value of \(\left(\frac{3\sqrt{x} + 3\sqrt{y}}{3\sqrt{x} - 3\sqrt{y}}\right)^2\) is: \[ \boxed{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

Evaluate : ( sqrt(2)x + sqrt(3)y ) ( sqrt(2)x + sqrt(3)y )

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

Solve (2)/(sqrt(x))+(3)/(sqrt(y))=2 ;(4)/(sqrt(x))+(3)/(sqrt(y))=2

Factorise: 2 sqrt2 x ^(3) + 3 sqrt3 y ^(3) + sqrt5 (5 -3 sqrt6 xy)

2x + 3y = 6 sqrt3 and 2x - 3y = 6, find the value of xy ?

Factorize : 2sqrt(2)x^(3)+3sqrt(3)y^(3)+sqrt(5)(5-3sqrt(6)xy)

3 sqrt(3x)^3 - 2 sqrt2y^3 = (sqrt3x - sqrt2y)(Ax^2 - Bxy + Cy^2) , then the value of (A^2 - B^2 + C^2) is: 3 sqrt(3x)^3 - 2 sqrt2y^3 = (sqrt3x - sqrt2y)(Ax^2 - Bxy + Cy^2) , है तो (A^2 - B^2 + C^2) का मान हैः

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If (p^2)/(q^2) + (q^2)/(p^2) =1, then the value of (p^6 +q^6) is

    Text Solution

    |

  2. If ( m + 1) = sqrt( n) + 3 the value of (1)/(2) (( m^(3) - 6 m^(2) ...

    Text Solution

    |

  3. If ( 3 x - 2y) : ( 2x + 3y) = 5 : 6 then one of the value of ((3 sq...

    Text Solution

    |

  4. If ((p^-1 q^2)/(p^3 q^-2))^(1/3) div ((p^6 q^-3)/(p^-2 q^3))^(1/3) =p...

    Text Solution

    |

  5. If a + b = 1. Find the value of a ^(3) + b ^(3) - ab - (a ^(2) - b ^(2...

    Text Solution

    |

  6. If x = a ^((1)/(2) ) + a ^((-1)/(2)) , y = a ^((1)/(2) ) - a ^((-1)/(2...

    Text Solution

    |

  7. If x ^(2) + y ^(2) + z ^(2) = xy + yz + zx, then the value of (3x ^(4...

    Text Solution

    |

  8. If x - sqrt(3) - sqrt(2) = 0 and y - sqrt(3) + sqrt(2) = 0 then ...

    Text Solution

    |

  9. If p ^(3) - q ^(3) = (p-q) { ( p - q ) ^(2) - xpq} then the value of x...

    Text Solution

    |

  10. If a^(2) + a + 1= 0 then the value of a^(5) + a^(4) + 1 is

    Text Solution

    |

  11. If x = a ( b - c) , y = b ( c - a) z = c ( a - b) then the value of...

    Text Solution

    |

  12. If x = y = z " then " (( x + y + z)^(2))/( x^(2) + y^(2) + z^(2)) is ...

    Text Solution

    |

  13. The simplified value of following is ((3)/(15) a^(5) b^(6) c^(3) ...

    Text Solution

    |

  14. If (2 a - 1) ^(2) + ( 4b - 3) ^(2) + ( 4 c + 5) ^(2) = 0 then the v...

    Text Solution

    |

  15. If 2 x + (2)/( x) = 3 then the value of x^(3) + (1)/( x^(3)) + 2 ...

    Text Solution

    |

  16. If x =3sqrt( x^(2) + 11) - 2 , then the value of ( x^( 3) + 5 x ^(...

    Text Solution

    |

  17. If x, y and z are real numbers such that ( x - 3) ^(2) + ( y - 4...

    Text Solution

    |

  18. If ( x - 4) ( x^(2) + 4 x + 16 ) = x^(3) - p then p is equal to

    Text Solution

    |

  19. The simplified value of (1- ( 2xy )/( x ^(2) + y ^(2))) div ((x ^(3)...

    Text Solution

    |

  20. If a + b + c =0 then the value of (1)/((a + b ) (b + c)) + (1)/( (b ...

    Text Solution

    |