Home
Class 14
MATHS
If a, b, c and d satisfy the equati...

If ` a, b, c ` and d satisfy the equations
`{:( a + 7b + 3c + 5d = 0 ),( 8 a + 4b + 6 c + 2 d = - 4 ),( 2 a + 6 b + 4 c + 8 d = 4 ),(5a + 3b + 7c + d = - 4 ),("then " (a + d)//( b + c) = ? ):}`

A

0

B

1

C

`-1`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the following equations: 1. \( a + 7b + 3c + 5d = 0 \) (Equation 1) 2. \( 8a + 4b + 6c + 2d = -4 \) (Equation 2) 3. \( 2a + 6b + 4c + 8d = 4 \) (Equation 3) 4. \( 5a + 3b + 7c + d = -4 \) (Equation 4) We need to find the value of \( \frac{a + d}{b + c} \). ### Step 1: Add Equation 1 and Equation 4 We start by adding Equation 1 and Equation 4: \[ (a + 7b + 3c + 5d) + (5a + 3b + 7c + d) = 0 + (-4) \] This simplifies to: \[ 6a + 10b + 10c + 6d = -4 \] ### Step 2: Factor out common terms We can factor out the common terms from the left-hand side: \[ 6(a + d) + 10(b + c) = -4 \] ### Step 3: Rearranging Now, we can rearrange this equation: \[ 6(a + d) = -4 - 10(b + c) \] ### Step 4: Add Equation 2 and Equation 3 Next, we add Equation 2 and Equation 3: \[ (8a + 4b + 6c + 2d) + (2a + 6b + 4c + 8d) = -4 + 4 \] This simplifies to: \[ 10a + 10b + 10c + 10d = 0 \] ### Step 5: Factor out common terms We can factor out the common terms from the left-hand side: \[ 10(a + b + c + d) = 0 \] ### Step 6: Rearranging This implies: \[ a + b + c + d = 0 \] ### Step 7: Express \( d \) From this equation, we can express \( d \): \[ d = - (a + b + c) \] ### Step 8: Substitute \( d \) back into the equation Now, we substitute \( d \) back into the equation we derived from Step 2: \[ 6(a + (- (a + b + c))) + 10(b + c) = -4 \] This simplifies to: \[ 6(-b - c) + 10(b + c) = -4 \] ### Step 9: Combine like terms Combining the terms gives us: \[ (-6b - 6c + 10b + 10c) = -4 \] This simplifies to: \[ 4b + 4c = -4 \] ### Step 10: Divide by 4 Dividing the entire equation by 4 gives us: \[ b + c = -1 \] ### Step 11: Substitute \( b + c \) back Now we substitute \( b + c = -1 \) back into the equation we derived in Step 2: \[ 6(a + d) + 10(-1) = -4 \] This simplifies to: \[ 6(a + d) - 10 = -4 \] ### Step 12: Solve for \( a + d \) Rearranging gives us: \[ 6(a + d) = 6 \] Dividing by 6 gives: \[ a + d = 1 \] ### Step 13: Calculate \( \frac{a + d}{b + c} \) Now we can find \( \frac{a + d}{b + c} \): \[ \frac{a + d}{b + c} = \frac{1}{-1} = -1 \] Thus, the final answer is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If a : b = 2 : 3, b : c = 3 : 4, c : d = 4 : 5, find a : b : c : d.

If a,b,c and d satisfy the equation a+7b+3c+5d=0,8a+4b+6c+2d=-162a+6b+4c+8d=16,5a+3b+7c+d=-16 then (a+d)(b+c) equation

"a b c - a - c - - b - d ? ? ? ?" "- 4 - 5 8 - - - - - 3 5 - - - -"

If A : B = 2 : 3, B : C = 3 : 4 and C :D = 3 : 5 then value of A : B : C : D is :

If A : B = 1 : 2 , B: C = 3: 4 and C: D = 5 : 6 find D: C : B :A

If A : B = 1 : 2, B : C = 3 : 4 and C : D = 5 : 6, then find the value of D : C : B.

In a A B C , A D is the bisector of /_B A C . If A B=8c m , B D=6c m and D C=3c m . Find A C 4c m (b) 6c m (c) 3c m (d) 8c m

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If a + (1)/(a) = - 2 then the value of a ^(1000) + a ^(-1000) is

    Text Solution

    |

  2. if a^(2) = b + c, b^(2) = a + c, c^(2) = b + a then what will be...

    Text Solution

    |

  3. If a, b, c and d satisfy the equations {:( a + 7b + 3c + 5d ...

    Text Solution

    |

  4. If (x)/(( b - c) ( b + c - 2a)) = (y)/(( c - a)( c + a- 2 b)) = (z)/(...

    Text Solution

    |

  5. If c + (1)/(c) = 3, then the value of (c-3) ^(7) + (1)/(c ^(7)) is

    Text Solution

    |

  6. If x = 3 sqrt(7) + 3 then the value of x ^(3) - 9 x^(2) + 27 x -...

    Text Solution

    |

  7. If p( x + y)^(2) = 5 and q ( x -y )^(2) = 3 then the simplified val...

    Text Solution

    |

  8. If x + (1)/( x) = - 2 then the value of x^(p) + x^(q) is : (where ...

    Text Solution

    |

  9. If ( 2 a - 3) ^(2) + ( 3 b + 4 )^(2) + ( 6 c + 1)^(2) = 0 then the v...

    Text Solution

    |

  10. If for a non - zero x, 3 x^(2) + 5 x + 3 = 0 then the value of x^...

    Text Solution

    |

  11. What is (( x ^(2) - y^(2))^(3) + ( y ^(2) - z^(2))^(3) + ( z^(2) - x...

    Text Solution

    |

  12. If ( x^(3) + 3 y ^(2) x)/( y^(3) + 3 x ^(2) y) = (35)/( 19) what is ...

    Text Solution

    |

  13. Given a - bb b =2 , a ^(3) - b ^(3) = 26 then (a + b ) ^(2) is

    Text Solution

    |

  14. If x + y+ z = 9 then the value of ( x - 4) ^(3) + ( y - 2)^(3) + ...

    Text Solution

    |

  15. If a =2, b =-3 then the value of 27 a ^(3) - 54 a ^(2) + 36 b ^(2) - 8...

    Text Solution

    |

  16. If a ^(3) + (1)/( a ^(3)) = 2 then value of (a ^(2) + 1 )/(a) is (a...

    Text Solution

    |

  17. If pq (p +q) =1, then the value of(1)/( p ^(3) q ^(3)) - p ^(3) - q ^(...

    Text Solution

    |

  18. If (a)/(b) + (b)/(a) =1, then the value of a ^(3) + b ^(3) is equal to

    Text Solution

    |

  19. If 1 + m + n = 9 and 1 ^(2) + m ^(2) + n ^(2) = 31, then the value of ...

    Text Solution

    |

  20. If x = (3)/(2) rthen the value of 27 x ^(3) - 54 x ^(2) + 36 x - 11 i...

    Text Solution

    |