Home
Class 14
MATHS
What is (( x ^(2) - y^(2))^(3) + ( y ^...

What is ` (( x ^(2) - y^(2))^(3) + ( y ^(2) - z^(2))^(3) + ( z^(2) - x^(2))^(3))/(( x - y )^(3) + ( y - z)^(3) + ( z - x)^(3))`

A

`((x + y) ( x + z))/( ( x + z))`

B

` ( x + y)^(3) ( y + z) ^(3) ( z + x)^(3)`

C

`( x + y) ( y + z) ( z + x)`

D

` ( x + y) ( y + z) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ L = \frac{(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3}{(x - y)^3 + (y - z)^3 + (z - x)^3} \] we can follow these steps: ### Step 1: Identify the components We have two parts in the expression: the numerator and the denominator. - The numerator consists of three cubes: \((x^2 - y^2)^3\), \((y^2 - z^2)^3\), and \((z^2 - x^2)^3\). - The denominator consists of three cubes: \((x - y)^3\), \((y - z)^3\), and \((z - x)^3\). ### Step 2: Use the identity for sums of cubes Recall the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This identity can be simplified when \(a + b + c = 0\), leading to: \[ a^3 + b^3 + c^3 = 3abc \] ### Step 3: Check if the conditions are satisfied For the numerator, we can set: - \(a = x^2 - y^2\) - \(b = y^2 - z^2\) - \(c = z^2 - x^2\) Now, we check if \(a + b + c = 0\): \[ (x^2 - y^2) + (y^2 - z^2) + (z^2 - x^2) = 0 \] This is indeed true, so we can apply the identity: \[ (x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3 = 3(x^2 - y^2)(y^2 - z^2)(z^2 - x^2) \] ### Step 4: Apply the identity to the denominator Similarly, for the denominator, we can set: - \(a = x - y\) - \(b = y - z\) - \(c = z - x\) Again, we check if \(a + b + c = 0\): \[ (x - y) + (y - z) + (z - x) = 0 \] This is also true, so we can apply the identity: \[ (x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x) \] ### Step 5: Substitute back into the expression Now substituting back into our expression for \(L\): \[ L = \frac{3(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{3(x - y)(y - z)(z - x)} \] ### Step 6: Simplify The \(3\) cancels out: \[ L = \frac{(x^2 - y^2)(y^2 - z^2)(z^2 - x^2)}{(x - y)(y - z)(z - x)} \] ### Step 7: Factor the differences of squares Using the difference of squares, we can rewrite \(x^2 - y^2\) as \((x - y)(x + y)\), and similarly for the other terms: \[ L = \frac{(x - y)(x + y)(y - z)(y + z)(z - x)(z + x)}{(x - y)(y - z)(z - x)} \] ### Step 8: Cancel out common terms The common terms \((x - y)\), \((y - z)\), and \((z - x)\) cancel out: \[ L = (x + y)(y + z)(z + x) \] ### Final Result Thus, the final simplified expression for \(L\) is: \[ L = (x + y)(y + z)(z + x) \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

The value of the expression ((x ^(2) - y ^(2)) ^(3) + ( y ^(2) - z ^(2)) ^(3) + (z ^(2) - x ^(2)) ^(3))/((x - y) ^(3) + ( y - z) ^(3) + (z - x ) ^(3)) is

Find ((x^(2)-y^(2))^(3) + (y^(2) -z^(2))^(3)+ (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Factors of (2x - 3y) ^(3) + ( 3y - 5z) ^(3) + ( 5z - 2x) ^(3) are:

Factorize : (x-2y)^(3)+(2y-3z)^(3)+(3z-x)^(3)

Factorize: (3x-2y)^(3)+(2y-4z)^(3)+(4z-3x)^(3)

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

verify that: x^(3)+y^(3)+z^(3)-3xyz=((1)/(2))(x+y+z)((x-y)^(2)+(y-z)^(2)+(z-x)^(2))

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If ( 2 a - 3) ^(2) + ( 3 b + 4 )^(2) + ( 6 c + 1)^(2) = 0 then the v...

    Text Solution

    |

  2. If for a non - zero x, 3 x^(2) + 5 x + 3 = 0 then the value of x^...

    Text Solution

    |

  3. What is (( x ^(2) - y^(2))^(3) + ( y ^(2) - z^(2))^(3) + ( z^(2) - x...

    Text Solution

    |

  4. If ( x^(3) + 3 y ^(2) x)/( y^(3) + 3 x ^(2) y) = (35)/( 19) what is ...

    Text Solution

    |

  5. Given a - bb b =2 , a ^(3) - b ^(3) = 26 then (a + b ) ^(2) is

    Text Solution

    |

  6. If x + y+ z = 9 then the value of ( x - 4) ^(3) + ( y - 2)^(3) + ...

    Text Solution

    |

  7. If a =2, b =-3 then the value of 27 a ^(3) - 54 a ^(2) + 36 b ^(2) - 8...

    Text Solution

    |

  8. If a ^(3) + (1)/( a ^(3)) = 2 then value of (a ^(2) + 1 )/(a) is (a...

    Text Solution

    |

  9. If pq (p +q) =1, then the value of(1)/( p ^(3) q ^(3)) - p ^(3) - q ^(...

    Text Solution

    |

  10. If (a)/(b) + (b)/(a) =1, then the value of a ^(3) + b ^(3) is equal to

    Text Solution

    |

  11. If 1 + m + n = 9 and 1 ^(2) + m ^(2) + n ^(2) = 31, then the value of ...

    Text Solution

    |

  12. If x = (3)/(2) rthen the value of 27 x ^(3) - 54 x ^(2) + 36 x - 11 i...

    Text Solution

    |

  13. If a+ b + c = 6 and ab + bc + ca = 11, then value of bc (b + c) +ca (c...

    Text Solution

    |

  14. If m + n =1, then the value of m ^(3) + n ^(3) + 3 mn

    Text Solution

    |

  15. If x^(3) + (1)/( x^(3)) = 110 then find the value of x + (1)/( x)

    Text Solution

    |

  16. If x^(2) + y^(2) + z^(2) = 14 and xy + yz + zx = 11 then the valu...

    Text Solution

    |

  17. If x= 3 sqrt( 28) , y = 3 sqrt(27) then the value of x - y - ( 1)/(...

    Text Solution

    |

  18. If x =12 and y = 4, then the value of (x + y) ^((x)/(y)) is

    Text Solution

    |

  19. If 2 x + (2)/( x) = 3 then the value of x^(3) + (1)/( x^(3)) + 2 ...

    Text Solution

    |

  20. If a + b = 3 then the value of a^(3) + b^(3) + 9ab - 27 is

    Text Solution

    |