Home
Class 14
MATHS
If x + (1)/( x) = 8 , then x^(2) + (...

If ` x + (1)/( x) = 8 ` , then ` x^(2) + (1)/( x^(2))` is equal to :

A

62

B

68

C

64

D

66

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 8 \) and find \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 8 \] ### Step 2: Square both sides To find \( x^2 + \frac{1}{x^2} \), we can square both sides of the equation: \[ \left( x + \frac{1}{x} \right)^2 = 8^2 \] ### Step 3: Expand the left side Using the identity \( (a + b)^2 = a^2 + 2ab + b^2 \), we can expand the left side: \[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 64 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 64 \] ### Step 4: Isolate \( x^2 + \frac{1}{x^2} \) Now, we can isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 64 - 2 \] \[ x^2 + \frac{1}{x^2} = 62 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{62} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=2 then x^(2)+(1)/(x^(2)) is equal to

If x+(1)/(x)=7 then x^(2)+(1)/(x^(2)) is equal to

Knowledge Check

  • If ( x+ (1)/( x)) = 3 then ( x^(8) + (1)/( x^(8))) is equal to

    A
    2201
    B
    2203
    C
    2207
    D
    2213
  • If x + (1)/(x) = 2 then x ^(2) + (1)/(x ^(2)) is equal to

    A
    0
    B
    2
    C
    4
    D
    8
  • If x + (1)/(x) = 3 then x^(8) + (1)/(x ^(8)) is equal to

    A
    2201
    B
    2203
    C
    2207
    D
    2213
  • Similar Questions

    Explore conceptually related problems

    If (x+(1)/(x))=6 , then (x^(2)+(1)/(x^(2))) is equal to

    int(x^(2)+1)/(x(x^(2)-1))dx is equal to

    If x-1/(x)=8 , the value of x^(2)+1/(x^(2)) is

    int(x^2+1)/(x(x^2-1))dx is equal to

    ( x + (1)/( x)) (x - (1)/( x)) ( x^(2) + (1)/( x^(2)) - 1) ( x^(2) + (1)/(x^(2))+ 1) is equal to