Home
Class 14
MATHS
If a^(2) + b^(2) + c^(2) - ab - bc - ca...

If ` a^(2) + b^(2) + c^(2) - ab - bc - ca = 0 ` . Then a : b : c is

A

` 1 : 1 : 2 `

B

` 1 : 1 : 1 `

C

` 1 : 2 : 1 `

D

` 2 : 1 : 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + b^2 + c^2 - ab - bc - ca = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ a^2 + b^2 + c^2 - ab - bc - ca = 0 \] We can rearrange it as: \[ a^2 + b^2 + c^2 = ab + bc + ca \] ### Step 2: Analyze the equality condition The equation \( a^2 + b^2 + c^2 = ab + bc + ca \) holds true under specific conditions. One of the conditions is when \( a = b = c \). ### Step 3: Substitute \( a = b = c \) Let’s assume: \[ a = b = c = k \] for some constant \( k \). Substituting these values into the equation gives: \[ k^2 + k^2 + k^2 = k \cdot k + k \cdot k + k \cdot k \] This simplifies to: \[ 3k^2 = 3k^2 \] which is always true. ### Step 4: Determine the ratio Since we have assumed \( a = b = c \), we can express the ratio \( a : b : c \) as: \[ a : b : c = k : k : k = 1 : 1 : 1 \] ### Conclusion Thus, the ratio \( a : b : c \) is: \[ \boxed{1 : 1 : 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - V) |13 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - II) |227 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If a^2 + b^2 + c^2 - ab - bc - ca = 0 , then prove that a=b=c.

If :a^(2)+b^(2)+c^(2)-ab-bc-ca=0, prove that a=b=c

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+ (c )/(a+b) = ?

If a^(2)+b^(2)+c^(2)-ab-bc-ca=0, prove that a=b=c

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?

If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) + (c+a)/(b)) ((c )/(a+b) + (b)/(a+c) + (c )/(a+b)) =?

If a^(2)+b^(2)+c^(2)-ab-bc-ca=0backslash then |a:b:c is 1:1:2 b.1:1:1 c.1:2:1 d.2:1:1