Home
Class 14
MATHS
If a^(2) + 13 b^(2) + c^(2) - 4 ab - 6 ...

If ` a^(2) + 13 b^(2) + c^(2) - 4 ab - 6 b c = 0 ` then a : b : c is

A

A)` 1 : 2 : 3 `

B

B)` 2 : 3 : 1 `

C

C)` 2 : 1 : 3 `

D

D)` 1 : 3 : 2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + 13b^2 + c^2 - 4ab - 6bc = 0 \) and find the ratio \( a : b : c \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ a^2 + 13b^2 + c^2 - 4ab - 6bc = 0 \] We can rearrange the terms to group them in a way that might help us complete the square. ### Step 2: Completing the Square for \( a \) We can rewrite the terms involving \( a \) and \( b \): \[ a^2 - 4ab + 13b^2 + c^2 - 6bc = 0 \] Now, we complete the square for \( a \) and \( b \): \[ (a - 2b)^2 - 4b^2 + 13b^2 + c^2 - 6bc = 0 \] This simplifies to: \[ (a - 2b)^2 + 9b^2 + c^2 - 6bc = 0 \] ### Step 3: Completing the Square for \( b \) and \( c \) Next, we complete the square for the terms involving \( b \) and \( c \): \[ (a - 2b)^2 + (c - 3b)^2 = 0 \] This means both squares must equal zero: \[ a - 2b = 0 \quad \text{and} \quad c - 3b = 0 \] ### Step 4: Solving the Equations From the equations: 1. \( a - 2b = 0 \) implies \( a = 2b \) 2. \( c - 3b = 0 \) implies \( c = 3b \) ### Step 5: Finding the Ratio Now we can express \( a \), \( b \), and \( c \) in terms of \( b \): \[ a = 2b, \quad b = b, \quad c = 3b \] Thus, the ratio \( a : b : c \) is: \[ 2b : b : 3b \] This simplifies to: \[ 2 : 1 : 3 \] ### Final Answer The ratio \( a : b : c \) is \( 2 : 1 : 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - V) |13 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - II) |227 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+ (c )/(a+b) = ?

If a^(2)+b^(2)+c^(2)-2a-4b6c= -14 then a+b+c =

If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) + (c+a)/(b)) ((c )/(a+b) + (b)/(a+c) + (c )/(a+b)) =?

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a^(2)+b^(2)+c^(2)-ab-bc-ca=0, then a+b=c( b) b+c=ac+a=b(d)a=b=c

If a + b + c = 13, a^2 + b^2 + c^2 = 69, " then find " ab + bc + ca .