Home
Class 14
MATHS
If ( 2 x - y )^(2) + ( 3 y - 2 z )^(2)=...

If ` ( 2 x - y )^(2) + ( 3 y - 2 z )^(2)= 0 ` then the ratio ` x : y : z` is

A

`1 : 3 : 2 `

B

` 1 : 2 : 3 `

C

` 3 : 1 : 2 `

D

` 3 : 2 : 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (2x - y)^2 + (3y - 2z)^2 = 0 \), we need to analyze the components of the equation. ### Step-by-step Solution: 1. **Understanding the Equation**: The equation \( (2x - y)^2 + (3y - 2z)^2 = 0 \) implies that both terms must equal zero because the square of a real number is always non-negative. Therefore, we can set each part to zero: \[ (2x - y)^2 = 0 \quad \text{and} \quad (3y - 2z)^2 = 0 \] 2. **Solving the First Equation**: From \( (2x - y)^2 = 0 \), we have: \[ 2x - y = 0 \] Rearranging gives: \[ y = 2x \] 3. **Solving the Second Equation**: From \( (3y - 2z)^2 = 0 \), we have: \[ 3y - 2z = 0 \] Rearranging gives: \[ 2z = 3y \quad \Rightarrow \quad z = \frac{3}{2}y \] 4. **Expressing Everything in Terms of x**: Now, substitute \( y = 2x \) into \( z = \frac{3}{2}y \): \[ z = \frac{3}{2}(2x) = 3x \] 5. **Finding the Ratios**: Now we have: - \( x = x \) - \( y = 2x \) - \( z = 3x \) Therefore, the ratio \( x : y : z \) can be expressed as: \[ x : 2x : 3x \] Dividing each term by \( x \) (assuming \( x \neq 0 \)): \[ 1 : 2 : 3 \] ### Final Answer: Thus, the ratio \( x : y : z \) is \( 1 : 2 : 3 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - V) |13 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - II) |227 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If (2x-y)^(2)+(3y-z)^(2)=0 then x:y:z is

If (x+y-z)^(2) +(y+z-x)^(2) +(z+x-y)^(2)=0 then what is the value of x+y+z ?

If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z =?

The value of the expression ((x ^(2) - y ^(2)) ^(3) + ( y ^(2) - z ^(2)) ^(3) + (z ^(2) - x ^(2)) ^(3))/((x - y) ^(3) + ( y - z) ^(3) + (z - x ) ^(3)) is

2x + 3y + z = 11, x + 2y + z = 8, x-y + z = 2

Prove that the lines 3x + 2y + z – 5 = 0 = x + y – 2z – 3 and 2x – y – z = 0 = 7x + 10y – 8z – 15 are perpendicular

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is