Home
Class 14
MATHS
If f (x) = (1)/( x) - (1)/( x +1) then ...

If ` f (x) = (1)/( x) - (1)/( x +1)` then what is the value of `f (1) + f( 2) + f(3) + . . . + f (10)` ?

A

`(9)/(10)`

B

`(10)/(11)`

C

`(11)/(12)`

D

`(12)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = \frac{1}{x} - \frac{1}{x+1} \) for values from 1 to 10 and then sum those values. ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{1}{x} - \frac{1}{x+1} \] 2. **Calculate \( f(1) \)**: \[ f(1) = \frac{1}{1} - \frac{1}{2} = 1 - 0.5 = 0.5 \] 3. **Calculate \( f(2) \)**: \[ f(2) = \frac{1}{2} - \frac{1}{3} = 0.5 - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \] 4. **Calculate \( f(3) \)**: \[ f(3) = \frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12} \] 5. **Calculate \( f(4) \)**: \[ f(4) = \frac{1}{4} - \frac{1}{5} = \frac{5}{20} - \frac{4}{20} = \frac{1}{20} \] 6. **Calculate \( f(5) \)**: \[ f(5) = \frac{1}{5} - \frac{1}{6} = \frac{6}{30} - \frac{5}{30} = \frac{1}{30} \] 7. **Calculate \( f(6) \)**: \[ f(6) = \frac{1}{6} - \frac{1}{7} = \frac{7}{42} - \frac{6}{42} = \frac{1}{42} \] 8. **Calculate \( f(7) \)**: \[ f(7) = \frac{1}{7} - \frac{1}{8} = \frac{8}{56} - \frac{7}{56} = \frac{1}{56} \] 9. **Calculate \( f(8) \)**: \[ f(8) = \frac{1}{8} - \frac{1}{9} = \frac{9}{72} - \frac{8}{72} = \frac{1}{72} \] 10. **Calculate \( f(9) \)**: \[ f(9) = \frac{1}{9} - \frac{1}{10} = \frac{10}{90} - \frac{9}{90} = \frac{1}{90} \] 11. **Calculate \( f(10) \)**: \[ f(10) = \frac{1}{10} - \frac{1}{11} = \frac{11}{110} - \frac{10}{110} = \frac{1}{110} \] 12. **Sum all values**: \[ f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7) + f(8) + f(9) + f(10) = 0.5 + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110} \] 13. **Finding a common denominator**: The least common multiple of the denominators (1, 6, 12, 20, 30, 42, 56, 72, 90, 110) is 27720. 14. **Convert each fraction to have the common denominator and sum**: - \( 0.5 = \frac{13860}{27720} \) - \( \frac{1}{6} = \frac{4620}{27720} \) - \( \frac{1}{12} = \frac{2310}{27720} \) - \( \frac{1}{20} = \frac{1386}{27720} \) - \( \frac{1}{30} = \frac{924}{27720} \) - \( \frac{1}{42} = \frac{660}{27720} \) - \( \frac{1}{56} = \frac{495}{27720} \) - \( \frac{1}{72} = \frac{385}{27720} \) - \( \frac{1}{90} = \frac{308}{27720} \) - \( \frac{1}{110} = \frac{252}{27720} \) Adding these up gives: \[ \frac{13860 + 4620 + 2310 + 1386 + 924 + 660 + 495 + 385 + 308 + 252}{27720} = \frac{20700}{27720} = \frac{231}{308} \] 15. **Final result**: \[ f(1) + f(2) + f(3) + \ldots + f(10) = 10 - \frac{1}{11} = \frac{110 - 1}{11} = \frac{109}{11} \approx 9.909 \] ### Final Answer: The value of \( f(1) + f(2) + f(3) + \ldots + f(10) \) is approximately \( 9.909 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - VI) |22 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f'(x)=(1)/(x)+x^(2) and f(1)=(4)/(3) then find the value of f(x)

If f(x)=((1)/(x)+1)/((1)/(x)-1) ,then the value of f(x)+f(-x) is:

If f:RtoR^(+) such that f(x)=(1//3)^(x) , the what is the value of f^(-1)(x) ?

If f(x ) = x^3 - 1/x^3 , then find the value of f(x) + f( 1/x )

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :