Home
Class 14
MATHS
((1)/(3)*(1)/(3)*(1)/(3)+(1)/(4)*(1)/(4)...

`((1)/(3)*(1)/(3)*(1)/(3)+(1)/(4)*(1)/(4)*(1)/(4)-3.(1)/(3)*(1)/(4)*(1)/(5)+(1)/(5)*(1)/(5)*(1)/(5))/((1)/(3)*(1)/(3)+(1)/(4)*(1)/(4)+(1)/(5)*(1)/(5)-((1)/(3)*(1)/(4)+(1)/(4)*(1)/(5)+(1)/(5)*(1)/(3)))` is equal to

A

`(2)/(3)`

B

`(3)/(4)`

C

`(47)/(60)`

D

`(49)/(60)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\left(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} - 3 \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}\right)}{\left(\frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{1}{5} - \left(\frac{1}{3} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{3}\right)}\right) \] we can simplify it step by step. ### Step 1: Define Variables Let: - \( A = \frac{1}{3} \) - \( B = \frac{1}{4} \) - \( C = \frac{1}{5} \) ### Step 2: Calculate the Numerator The numerator is: \[ A^3 + B^3 - 3ABC + C^3 \] Calculating each term: - \( A^3 = \left(\frac{1}{3}\right)^3 = \frac{1}{27} \) - \( B^3 = \left(\frac{1}{4}\right)^3 = \frac{1}{64} \) - \( C^3 = \left(\frac{1}{5}\right)^3 = \frac{1}{125} \) - \( 3ABC = 3 \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} = 3 \cdot \frac{1}{60} = \frac{3}{60} = \frac{1}{20} \) Now, substituting these values into the numerator: \[ \frac{1}{27} + \frac{1}{64} - \frac{1}{20} + \frac{1}{125} \] ### Step 3: Find a Common Denominator The least common multiple (LCM) of 27, 64, 20, and 125 is 10800. We convert each fraction: - \( \frac{1}{27} = \frac{400}{10800} \) - \( \frac{1}{64} = \frac{168.75}{10800} \) (or \( \frac{675}{10800} \)) - \( \frac{1}{20} = \frac{540}{10800} \) - \( \frac{1}{125} = \frac{86.4}{10800} \) (or \( \frac{86.4}{10800} \)) Now, we can add and subtract these fractions: \[ \frac{400 + 675 - 540 + 86.4}{10800} \] ### Step 4: Calculate the Numerator Value Calculating: \[ 400 + 675 - 540 + 86.4 = 621.4 \] Thus, the numerator becomes: \[ \frac{621.4}{10800} \] ### Step 5: Calculate the Denominator The denominator is: \[ A^2 + B^2 + C^2 - (AB + BC + CA) \] Calculating each term: - \( A^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \) - \( B^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16} \) - \( C^2 = \left(\frac{1}{5}\right)^2 = \frac{1}{25} \) Now, \( AB + BC + CA \): - \( AB = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12} \) - \( BC = \frac{1}{4} \cdot \frac{1}{5} = \frac{1}{20} \) - \( CA = \frac{1}{5} \cdot \frac{1}{3} = \frac{1}{15} \) Now, substituting these values into the denominator: \[ \frac{1}{9} + \frac{1}{16} + \frac{1}{25} - \left(\frac{1}{12} + \frac{1}{20} + \frac{1}{15}\right) \] ### Step 6: Find a Common Denominator for the Denominator The LCM of 9, 16, 25, 12, 20, and 15 is 1800. Calculating each term: - \( \frac{1}{9} = \frac{200}{1800} \) - \( \frac{1}{16} = \frac{112.5}{1800} \) (or \( \frac{112.5}{1800} \)) - \( \frac{1}{25} = \frac{72}{1800} \) - \( \frac{1}{12} = \frac{150}{1800} \) - \( \frac{1}{20} = \frac{90}{1800} \) - \( \frac{1}{15} = \frac{120}{1800} \) Now, we can add and subtract these fractions: \[ \frac{200 + 112.5 + 72 - (150 + 90 + 120)}{1800} \] ### Step 7: Calculate the Denominator Value Calculating: \[ 200 + 112.5 + 72 - 360 = 24.5 \] Thus, the denominator becomes: \[ \frac{24.5}{1800} \] ### Step 8: Final Calculation Now we have: \[ \frac{\frac{621.4}{10800}}{\frac{24.5}{1800}} = \frac{621.4 \cdot 1800}{10800 \cdot 24.5} \] ### Step 9: Simplify This simplifies to: \[ \frac{621.4 \cdot 1800}{10800 \cdot 24.5} = \frac{621.4 \cdot 1}{60 \cdot 24.5} = \frac{621.4}{1470} \] ### Step 10: Final Result Calculating this gives us the final value.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - V) |13 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

5(1)/(6)-3(1)/(4)+3(1)/(3)+4

(1)/((4^(-5))^((1)/(3)))

(3(1)/(4)-(4)/(5)(5)/(6))/(4(1)/(3)+(1)/(5)-((3)/(10)+21(1)/(5)))=?

4-(5)/(1+(1)/(3+(1)/(2+(1)/(4))))

1+((1)/(2)+(1)/(3))/((1)/(3)-(1)/(6))/2-((4)/(5)of(5)/(6))/((2)/(3))

(-(1)/(2)-(2)/(3)+(4)/(5)-(1)/(3)+(1)/(5)+(3)/(4))/((1)/(2)+(2)/(3)-(4)/(3)+(1)/(3)-(1)/(5)-(4)/(5)) is simplified to

(3(1)/(4)-(4)/(5) "of"(5)/(6))/(4(1)/(3)-: (1)/(5)-((3)/(10)+21(1)/(5)))

[4(1)/(5)-:{1(3)/(4)-(1)/(2)(3(1)/(2)-(1)/(4)-(1)/(6))}]

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - VI)
  1. If (***) is n operation such that a (***) b = a + b when a gt 0, b...

    Text Solution

    |

  2. The expression x^(4) + 2 x ^(2) + k will be a perfect square when t...

    Text Solution

    |

  3. if x = 3 sqrt ( a + sqrt( a ^(2) + b^(3)))+ 3 sqrt( a - sqrt(a^(2) + ...

    Text Solution

    |

  4. ((1)/(3)*(1)/(3)*(1)/(3)+(1)/(4)*(1)/(4)*(1)/(4)-3.(1)/(3)*(1)/(4)*(1)...

    Text Solution

    |

  5. When x^(m) is multiplied by x^(n) product is 1 . The relation b...

    Text Solution

    |

  6. The term , that should be added to ( 4 x ^(2) + 8x) so that result...

    Text Solution

    |

  7. The mean of x and (1)/(x) is N then the mean of x^(2) and (1)/( x^(...

    Text Solution

    |

  8. If 3 ( a^(2) + b^(2) + c^(2)) = (a + b + c)^(2) then the relation be...

    Text Solution

    |

  9. What is the digit in the unit's place in the number (151!)/(100)

    Text Solution

    |

  10. Three numbers are in Arithmetic Progression (A.P.) whose sum is 30 a...

    Text Solution

    |

  11. If U(n) = (1)/( n) - (1)/( n + 1) , then the value of U(1) + U(2) + ...

    Text Solution

    |

  12. If A = 2^(32) , B = 2^(31) + 2^(30) + 2 ^(29) + . . . + 2^(@) and C...

    Text Solution

    |

  13. If the difference between the roots of the equation Ax^(2) - B x +...

    Text Solution

    |

  14. alpha and beta are the roots quadratic equation . If alpha + beta...

    Text Solution

    |

  15. Cost of 8pencils, 5pens and 3erasers is rs.111. Cost of 9pencil, 6pens...

    Text Solution

    |

  16. If A = 1 + 2^(p) and B = 1 + 2^(-p) , then what is the value of B ?

    Text Solution

    |

  17. If x^(y + x ) = 1, y^(x + z) = 1024 and z^(x+ y) = 729 (x, y and z...

    Text Solution

    |

  18. The cost price of 3 exam pads and 2 pencils is Rs. 96.4 exam pads an...

    Text Solution

    |

  19. A zoo has few numbers of penguins and polar bears. The total numbe...

    Text Solution

    |

  20. If 5 sqrt5 x^3-81 sqrt3 y^3 div sqrt5 x-3 sqrt3 y=Ax^2+By^2+Cxy, then ...

    Text Solution

    |