Home
Class 12
MATHS
If tan^-1 x + tan^-1y = pi/4, xy < 1, th...

If `tan^-1 x + tan^-1y = pi/4, xy < 1, then write the value of x +y + xy.

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

If tan^-1 x + tan^-1 y = (4pi)/5 , then cot^-1 x + cot^-1 y equals

Solve the following equations: tan^-1 2 x + tan^-1 3x = pi/4, x > 0

If tan^-1 2x + tan^-1 3x = pi/2 , then the value of x is equal to

If tan^-1 x = y , then

Solve the following equations: tan^-1(x+2) + tan^-1(x-2) = pi/4, x > 0

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

Solve the following equation tan^(-1) 2 + tan^(-1) 3x = pi/4

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

Write down the conditioni under which tan^-1 x + tan^-1 y = tan^-1 (x+y)/(1-xy), x, y in r .