Home
Class 12
MATHS
Solve for x : ( tan^(-1) x)^(2) + ( co...

Solve for ` x : ( tan^(-1) x)^(2) + ( cot^(-1) x) ^(2) = (5 pi^(2))/8`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Solve (tan^(-1) x)^(2) + (cot^(-1) x)^(2) = (5pi^(2))/(8)

Solve the following 5 tan^(-1) x + 3 cot^(-1) x = 2 pi

Solve for x : tan^-1(x + 2) + tan^-1 (x - 2) = pi/4, x > O

Solve for x : "tan"^(-1)(1-x)/(1+x)=1/(2)"tan"^(-1)x,xgt0 .

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

Solve for x : tan^-1(sin^-1(2x/(1+x^2) - 4 cos^-1((1-x^2)/(1+x^2)) + 2 tan^-1(2x/(1-x^2)) = pi/3

Let x_(1) " and " x_(2) ( x_(1) gt x_(2)) be roots of the equation sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 , then

Solve the equation (tan x )^( cos^(2) x)= ( cot x )^( sin x )