Home
Class 12
MATHS
Prove that : tan^-1((cosx)/(1+sinx)) = p...

Prove that : `tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx)) )=x/2, x lt pi .

Write the following in the simplest form: tan^-1((cos x)/(1-sinx)), - pi/2 < x < pi/2

Prove that : (1-sin2x)/(1+sin2x)= tan^2 (pi/4-x) .

Differntiate the following functions w.r.t.x tan^-1((1-cosx)/(sinx)), - pi/2 < x < pi/2

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4