Home
Class 12
MATHS
Prove that : cos^-1 (cos^2x - sin^2x) = ...

Prove that : `cos^-1 (cos^2x - sin^2x) = 2x`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that cos4x = 2cos^2(2x) - 1

Prove that (sinx - sin3x)/(cos^2x - sin^2x) = -2sinx

Prove that (cos^3x - sin^3x)/(cosx - sinx) = (2 + sin2x)/2

Prove that: (cos x + cos y)^2 + (sin x -sin y)^2 = 4 cos^2frac (x+y)(2)

If x=(11 pi)/4 , prove that : sin^2 x- cos^2 x+2 tan x- sec^2 x=1 .

Prove that cos^-1x = pi/2 - sin^-1 x for -1lexle1 and use this result to find d/dx(cos^-1x)

Prove the following: cos^2 2x - cos^2 6x = sin 4x sin 8x

Prove that sin^4x + cos^4x = 1 - 2sin^2xcos^2x

Prove that : cos^2 (pi/8+x/2)-sin^2 (pi/8-x/2)= 1/sqrt2 cos x .

Prove that following : cos^-1 x = 2 sin^-1 sqrt(1-x)/(2) = 2cos^-1 sqrt(1+x)/(2), |x| le 1