Home
Class 12
MATHS
Show that : sin^-1(2xsqrt(1-x^2)) = 2 co...

Show that : `sin^-1(2xsqrt(1-x^2)) = 2 cos^-1 x, 1/sqrt2lexle1`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Show that : sin^-1(2xsqrt(1-x^2)) = 2 sin^-1 x, -1/sqrt2lexle1/sqrt2

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Is tan^-1(sqrt((1-x^2)/(1+x^2))) = 1/2 cos^-1 x true?

Find dy/dx in the following: y=sin^-1(2x sqrt(1-x^2)) , -1/sqrt2ltxlt1/sqrt2

Prove that following : cos^-1 x = 2 sin^-1 sqrt(1-x)/(2) = 2cos^-1 sqrt(1+x)/(2), |x| le 1

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Differentiate the following functions w.r.t.x sin^-1(2xsqrt(1-x^2)), |x| < 1/sqrt(2)

Show that: tan^(-1)[(sqrt(1+x^(2)) + sqrt(1-x^(2)))/(sqrt(1 +x^(2))- sqrt(1-x^(2)))]=pi/4 +1/2 cos^(-1) x^(2), -1 lt x lt 1