Home
Class 12
MATHS
Prove that : tan^-1((2xsqrt(1-x^2))/(1-2...

Prove that : `tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x ` when: `1/sqrt2 le x le 1/sqrt2`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

Is tan^-1(sqrt((1-x^2)/(1+x^2))) = 1/2 cos^-1 x true?

Prove that tan^-1(x/(sqrt(a^2 - x^2)) = sin^-1 (x/a), |x| < a.

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that cos(2 tan^-1 (sqrt((1-x)/(1+x)))) = x, - 1 < x le 1

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

Show that : sin^-1(2xsqrt(1-x^2)) = 2 sin^-1 x, -1/sqrt2lexle1/sqrt2

Show that : sin^-1(2xsqrt(1-x^2)) = 2 cos^-1 x, 1/sqrt2lexle1

Prove that 2 tan^-1 sqrt((1- x)/(1+x))= x, -1 le x le 1

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1