Home
Class 12
MATHS
Prove that tan^(-1)sqrtx = 1/2cos^(-1) (...

Prove that `tan^(-1)sqrtx = 1/2cos^(-1) ((1-x)/(1+x)), x in [0,1]`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

tan^(-1) sqrt(x) = (1)/(2) cos^(-1) ((1-x)/(1+x)), x in [0, 1]

Prove that tan^-1 sqrtx = sin^-1 sqrt(x/1+x) = 1/2cos^-1 ((1-x)/(1+x)), x ge 0

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that 2 tan^-1 sqrt((1- x)/(1+x))= x, -1 le x le 1

Show that 2 tan^-1 x = cosec^-1((1+x^2)/(2x)), 0 < |x| le 1

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[(1)/(2),1]

Prove that: d/dx[sin^-1sqrtx]=1/(2sqrt(x-x^2))

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that cos(2 tan^-1 (sqrt((1-x)/(1+x)))) = x, - 1 < x le 1