Home
Class 12
MATHS
Prove that : tan^-1((1-x)/(1+x))= pi/4 -...

Prove that : `tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

Prove that : tan^-1((6x-8x^3)/(1-12x^2))- tan^-1(4x/(1-4x^2)) = tan^-1 2x,|2x| < 1/sqrt3

Prove that 2 tan^-1 sqrt((1- x)/(1+x))= x, -1 le x le 1

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that tan^-1 (x+sqrtx)/(1-xsqrtx) = tan^-1 x + tan^-1 sqrtx, 0 le x < 1

Prove that : tan^-1 x +tan^-1 2x/(1-x^2) = tan^-1 ((3x-x^3)/(1-3x^2)), |x| < 1/sqrt3

Solve the Equation : tan^-1 ((x+1)/(x-1)) + tan^-1 ((x-1)/x) = tan^-1 (-7)

Solve the Equation : tan^-1 ((x-1)/(x+2)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 23/36

Solve the following equation : tan^-1((1-x)/(1+x)) = (1/2)tan^-1x, (x>0)