Home
Class 12
MATHS
find the value of x: cos(tan^-1x) = si...

find the value of x:
`cos(tan^-1x) = sin(cot^-1(3)/(4))`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

If x in R, find the value of cos(tan^-1 x + cot^-1 x)

The value of cot(sin^(-1)x) is

Solve the following equations. cos(tan^-1x) = sin (cot^-1 (3//4)

Find the value of tan(sin^(-1)""(3)/(5)-cot^(-1)""(3)/(2))

Find the value of tan(sin^(-1)""(3)/(5)+cot^(-1)""(3)/(2))

find the value of x: 3 sin^-1(2x)/(1+x^2) - 4 cos^-1((1-x^2)/(1+x^2)) + 2 tan^-1(2x/(1-x^2)) = pi/3

Find the value of tan(cos^-1 4/5 + cot^-1(3/2))

Find the value of sin^-1 (cos(sin^-1x)) + cos^-1 (sin (cos^-1 x))

Find the value of tan { cot ^(-1) ((-2)/3)}