Home
Class 12
MATHS
Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x...

Prove that `tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Is tan^-1(sqrt((1-x^2)/(1+x^2))) = 1/2 cos^-1 x true?

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

Differentiate tan^(-1)((sqrt(1 - x^2))/(x)) w.r.t. cos^(-1)(2x sqrt(1 - x^2))

Prove that : 2tan^(-1)(sqrt((a-b)/(a+b))tan""x/2)=cos^(-1)((acosx+b)/(a+bcosx)) .