Home
Class 12
MATHS
Prove that : 1/2 tan^-1x = cos^-1{(1+sqr...

Prove that : `1/2 tan^-1x = cos^-1{(1+sqrt(1+x^2))/(2sqrt(1+x^2))}^(1/2)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

Show that: tan^(-1)[(sqrt(1+x^(2)) + sqrt(1-x^(2)))/(sqrt(1 +x^(2))- sqrt(1-x^(2)))]=pi/4 +1/2 cos^(-1) x^(2), -1 lt x lt 1

Prove that 3 tan^-1 x = tan^-1(3x-x^3)/(1-3x^2), |x| < 1/sqrt3

Prove that tan^-1 sqrtx = sin^-1 sqrt(x/1+x) = 1/2cos^-1 ((1-x)/(1+x)), x ge 0

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x