Home
Class 12
MATHS
Prove that : tan^-1[(sqrt(1+z) + sqrt(1-...

Prove that : `tan^-1[(sqrt(1+z) + sqrt(1-z))/(sqrt(1+z) - sqrt(1-z))= pi/4 + 1/2 cos^-1z`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^-1[(sqrt(1+x) - sqrt(1-x))/(sqrt1+x + sqrt1-x)] = pi/4 - 1/2cos^-1x

Prove that tan^-1((sqrt(1+x)- (sqrt(1-x)))/(sqrt(1+x) + (sqrt(1-x)))) = pi/4 - 1/2 cos^-1 x

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

Prove that : tan^-1 [frac { (1+z)^(1/2) - (1-z)^(1/2)}{ (1+z)^(1/2) + (1-z)^(1/2)}]=frac{pi}{4}-frac{1}{2} cos^-1 (z) .

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

If x^(2)+y^(2)+z^(2)-2xyz=1 , then the value of (dx)/(sqrt(1-x^(2)))+(dy)/(sqrt(1-y^(2)))+(dz)/(sqrt(1-z^(2))) is equal to………..

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

Solve l=int_(cos^(4)t)^(-sin^(4)t)(sqrt(f(z))dz)/(sqrt(f(cos 2 t -z))+sqrt(f(z)))