Home
Class 12
MATHS
If sin^-1x + sin^-1y + sin^-1z = pi, pro...

If `sin^-1x + sin^-1y + sin^-1z = pi`, prove that `xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

If y = sin^-1x , prove that (1-x^2)y_2 - x y_1= 0

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

sin^-1 x+ sin^-1 y = sin^-1[x 1-y^2 + y 1- x^2]

If y = sin(2sin^-1x) , show that: dy/dx=2sqrt((1-y^2)/(1-x^2))

If sin^-1x + sin^-1 y + sin^-1z = (3pi)/2, then the value of x^9 + y^9 + z^9 - (1)/(x^9y^9z^9) is equal to

Find dy/dx if y = sin^-1x + sin^-1 sqrt(1-x^2) , 0ltxlt1

If y=[sin^-1 x]^2 , then prove that : (1 -x^2) y_2-xy_1 - 2 = 0 .