Home
Class 12
MATHS
Prove that cos (tan^(-1)(sin(cot^-1x)))...

Prove that `cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove the following: cos[tan^-1{sin(cot^-1x)}]=sqrt((1+x^2)/(2+x^2))

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

Prove that : 1/2 tan^-1x = cos^-1{(1+sqrt(1+x^2))/(2sqrt(1+x^2))}^(1/2)

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Prove that sec [cot^-1{sin(tan^-1 (cosec(cos^-1 a)))}] = sqrt(3-a^2), where |a| < 1

Prove that cot(cosec^-1x) = sqrt(x^2 - 1) for x ge 1

Prove that derivative of tan^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t. tan^(-1) x is independent of x.

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that sin(2 tan^-1(sqrt((1+x)/(1-x))) = sqrt(1-x^2) , - le x < 1