Home
Class 12
MATHS
Prove that tan(cot^-1x) = cot(tan^-1x). ...

Prove that `tan(cot^-1x) = cot(tan^-1x)`. State with reason whether the equality is valid for all values of x.

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that cot^-1x+cot^(-1)(1/x) is a constant.

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

cot^-1(-x) = pi - cot^-1x , x in R

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Evaluate int (tan^(-1)x + cot^(-1)x) dx

Prove that cot^-1x = pi/2 - tan^-1x and use this to find the derivative of cot^-1 x .

Prove that (1-tan^2theta)/(cot^2theta-1)=tan^2theta,thetane45^@ .

If 3 tan^-1 x + cot^-1 x = pi , then x equals

If cot^-1 x = tan^-1(1/x) for all x in S, then find the set S.