Home
Class 12
MATHS
Prove that : sin(tan^(-1)1) = 1/sqrt2...

Prove that : `sin(tan^(-1)1) = 1/sqrt2`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that sin(2 tan ^-1 1/3) + cos (tan^-12sqrt2) = 14/15

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Prove that (tan^(-1)(1/e))^2+(2e)/sqrt(e^2+1)<(tan^(-1)e)^2+2/(sqrt(e^2+1))

Prove that : tan^-1[(sqrt(1+z) + sqrt(1-z))/(sqrt(1+z) - sqrt(1-z))= pi/4 + 1/2 cos^-1z

Prove that : tan^-1[(sqrt(1+x) - sqrt(1-x))/(sqrt1+x + sqrt1-x)] = pi/4 - 1/2cos^-1x

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

Prove that cos(2tan^-1 1/7) = sin ( 4 tan^-1 1/3)

Prove that tan(sec^-1 x) = sqrt(x^2 - 1) for x le 1

Prove that sin(2 tan^-1(sqrt((1+x)/(1-x))) = sqrt(1-x^2) , - le x < 1