Home
Class 12
MATHS
tan^-1[tan(5pi)/6] ne (5pi)/6, What is i...

`tan^-1[tan(5pi)/6] ne (5pi)/6`, What is its value?

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Show that sin^-1[sin(3pi)/4]ne (3pi)/4 . What is its value?

tan^(-1)[sin(-pi/2)]=pi/4 .

Evaluate tan^-1(tan((5pi)/4))

The minimum value of n for which tan^(-1)""n/pi lt pi/4, n in N , is valid is 5.

If tan^-1 2x + tan^-1 3x = pi/2 , then the value of x is equal to

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

If tan^-1((x-1)/(x-2)) + tan((x+1)/(x+2)) = pi/4 , then find the value of 'x'.

If tan^-1 x + tan^-1y = pi/4, xy < 1, then write the value of x +y + xy.

If tan^-1 x + tan^-1 y = (4pi)/5 , then cot^-1 x + cot^-1 y equals