Home
Class 12
MATHS
Prove that : tan^-1 x + cot^-1(x+1) = ta...

Prove that : `tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^-1 x +tan^-1 2x/(1-x^2) = tan^-1 ((3x-x^3)/(1-3x^2)), |x| < 1/sqrt3

Prove that 3 tan^-1 x = tan^-1(3x-x^3)/(1-3x^2), |x| < 1/sqrt3

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Find the solution of the equation: tan^-1x - cot^-1 x = tan^-1(1/sqrt3)

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that tan^-1 (x+sqrtx)/(1-xsqrtx) = tan^-1 x + tan^-1 sqrtx, 0 le x < 1

Solve the Equation : tan^-1 ((x-1)/(x+2)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 23/36

Prove that cot^-1x+cot^(-1)(1/x) is a constant.

Prove that tan(sec^-1 x) = sqrt(x^2 - 1) for x le 1