Home
Class 12
MATHS
Is tan^-1(sqrt((1-x^2)/(1+x^2))) = 1/2 c...

Is `tan^-1(sqrt((1-x^2)/(1+x^2))) = 1/2 cos^-1` x true?

Promotional Banner

Topper's Solved these Questions

  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise EXERCISE|156 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

Prove that cos(2 tan^-1 (sqrt((1-x)/(1+x)))) = x, - 1 < x le 1

Differentiate tan^(-1)((sqrt(1 - x^2))/(x)) w.r.t. cos^(-1)(2x sqrt(1 - x^2))

Prove that sin(2 tan^-1(sqrt((1+x)/(1-x))) = sqrt(1-x^2) , - le x < 1

Prove that 2 tan^-1 sqrt((1- x)/(1+x))= x, -1 le x le 1

If x in ((1)/(sqrt(2)), 1) , differentiate tan^(-1) ((sqrt(1-x^2))/(x)) with respect to cos^(-1)(2x sqrt(1-x^2)) .

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

Show that: tan^(-1)[(sqrt(1+x^(2)) + sqrt(1-x^(2)))/(sqrt(1 +x^(2))- sqrt(1-x^(2)))]=pi/4 +1/2 cos^(-1) x^(2), -1 lt x lt 1