Home
Class 12
MATHS
Without expanding the determinant, show ...

Without expanding the determinant, show that : `(frac{1}{a}+frac{1}{b}+frac{1}{c}+1)` is a factor of : `|[[1+a,1,1],[1,1+b,1],[1,1,1+c]]|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, show that : (frac{1}{p}+frac{1}{q}+frac{1}{r}+1) is a factor of : |[[1+p,1,1],[1,1+q,1],[1,1,1+r]]

Without expanding the determinant, show that : (frac{1}{x}+frac{1}{y}+frac{1}{z}+1) is a factor of : |[[1+x,1,1],[1,1+y,1],[1,1,1+z]]|

sin^-1 (frac{1}{2}) is equal to :

tan^-1(frac{1}{ 3}) -cot^-1(-frac{1}{ 3}) is equal to :

tan^-1 frac{1}{sqrt3} + cos^-1 frac{1}{ 2} is equal to :

2tan^-1 frac{1}{3} + tan^-1 frac{1}{7}= frac {pi}{4}

Show that : tan^-1 frac{1}{2} + tan^-1 frac{1}{4}=frac{1}{2} cos^-1 frac{13}{85}

Show that : tan^-1 frac{1}{2} + tan^-1 frac{1}{5}=frac{1}{2} cos^-1 frac{16}{65}

sin (frac {pi}{3} - sin^-1 (-frac{1}{2})) is equal to:

Show that : tan^-1 frac{1}{3} + tan^-1 frac{1}{5}=frac{1}{2} cos^-1 frac{33}{65}

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Without expanding, prove that Delta = abs{:(x+y, y + z, z+ x),(z, x ,...

    Text Solution

    |

  2. Without expanding, prove that : |{:(1, bc, a(b+ c) ),(1, ca, b ( c+ a)...

    Text Solution

    |

  3. Without expanding the determinant, show that : (frac{1}{a}+frac{1}{b}+...

    Text Solution

    |

  4. (x+y+z) is fator of : {:|(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y)|

    Text Solution

    |

  5. Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[...

    Text Solution

    |

  6. Evaluate the following: {:|(b+c,a,a),(b,c+a,b),(c,c,a+b)|

    Text Solution

    |

  7. Evaluate |(x+lamda,x,x),(x,x+lamda,x),(x,x,x+lamda)|

    Text Solution

    |

  8. Evaluate the following: {:|(1,a,b+c),(1,b,c+a),(1,c,a+b)|

    Text Solution

    |

  9. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  10. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  11. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  12. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  13. Without expanding, prove the following |(x+4,x,x),(x,x+4,x),(x,x,x+...

    Text Solution

    |

  14. using properties of determinant, prove that abs{:(y+k , y , y ),(y , y...

    Text Solution

    |

  15. Prove that: {:|(x,y,x+y),(y,x+y,x),(x+y,x,y)| = -2(x^3+y^3)

    Text Solution

    |

  16. By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2]...

    Text Solution

    |

  17. Prove that: {:|(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,)|=(a+b)+c)(a^2+b^2+...

    Text Solution

    |

  18. Prove that: {:|(1,a,a),(a,1,a),(a,a,1)|= (2a+1),(1-a)^2

    Text Solution

    |

  19. Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+...

    Text Solution

    |

  20. Prove that: {:|(1,1,1),(a,b,c),(bc,ca,ab)| = (a-b)(b-c)(c-a)

    Text Solution

    |