Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that `|[a,a^2,bc],[b,b^2,ca],[c,c^2,ab]| = |[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

Prove that: |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=|[a^2+1,b^2,c^2],[a^2,b^2+1,c^2],[a^2,b^2,c^2+1]|=1+a^2+b^2+c^2

Prove that: |[a+b+2c,a,b],[c,b+c+2a,b],[c,a,c+a+2b]|= 2(a+b+c)^3

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Without expanding the determinant, show that : (frac{1}{a}+frac{1}{b}+...

    Text Solution

    |

  2. (x+y+z) is fator of : {:|(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y)|

    Text Solution

    |

  3. Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[...

    Text Solution

    |

  4. Evaluate the following: {:|(b+c,a,a),(b,c+a,b),(c,c,a+b)|

    Text Solution

    |

  5. Evaluate |(x+lamda,x,x),(x,x+lamda,x),(x,x,x+lamda)|

    Text Solution

    |

  6. Evaluate the following: {:|(1,a,b+c),(1,b,c+a),(1,c,a+b)|

    Text Solution

    |

  7. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  8. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  9. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  10. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  11. Without expanding, prove the following |(x+4,x,x),(x,x+4,x),(x,x,x+...

    Text Solution

    |

  12. using properties of determinant, prove that abs{:(y+k , y , y ),(y , y...

    Text Solution

    |

  13. Prove that: {:|(x,y,x+y),(y,x+y,x),(x+y,x,y)| = -2(x^3+y^3)

    Text Solution

    |

  14. By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2]...

    Text Solution

    |

  15. Prove that: {:|(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,)|=(a+b)+c)(a^2+b^2+...

    Text Solution

    |

  16. Prove that: {:|(1,a,a),(a,1,a),(a,a,1)|= (2a+1),(1-a)^2

    Text Solution

    |

  17. Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+...

    Text Solution

    |

  18. Prove that: {:|(1,1,1),(a,b,c),(bc,ca,ab)| = (a-b)(b-c)(c-a)

    Text Solution

    |

  19. Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  20. Prove that: {:|(bc,a,1),(ca,b,1),(ab,c,1)| = (a-b)(b-c)(a-c)

    Text Solution

    |