Home
Class 12
MATHS
Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|...

Evaluate `|[1,x,y],[1,x+y,y],[1,x,x+y]|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

The value of |[[1,x,y+z],[1,y,z+x],[1,z,x+y]]| is

The value of the det. |[x+y,y+z,z+x],[z,x,y],[1,1,1]| is

Use properties of determinants ot evaluate: {:|(x+y,y+z,z+x),(z,x,y),(1,1,1)|

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+z)

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

If [[e^x,e^y],[e^y,e^x]] = [[1,1],[1,1]] then (x,y) = ___________

Find x and y, if 2[[1,3],[0,x]]+[[y,0],[1,2]] = [[5,6],[1,8]]

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Evaluate the following: {:|(1,a,b+c),(1,b,c+a),(1,c,a+b)|

    Text Solution

    |

  2. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  3. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  4. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  5. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  6. Without expanding, prove the following |(x+4,x,x),(x,x+4,x),(x,x,x+...

    Text Solution

    |

  7. using properties of determinant, prove that abs{:(y+k , y , y ),(y , y...

    Text Solution

    |

  8. Prove that: {:|(x,y,x+y),(y,x+y,x),(x+y,x,y)| = -2(x^3+y^3)

    Text Solution

    |

  9. By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2]...

    Text Solution

    |

  10. Prove that: {:|(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,)|=(a+b)+c)(a^2+b^2+...

    Text Solution

    |

  11. Prove that: {:|(1,a,a),(a,1,a),(a,a,1)|= (2a+1),(1-a)^2

    Text Solution

    |

  12. Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+...

    Text Solution

    |

  13. Prove that: {:|(1,1,1),(a,b,c),(bc,ca,ab)| = (a-b)(b-c)(c-a)

    Text Solution

    |

  14. Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  15. Prove that: {:|(bc,a,1),(ca,b,1),(ab,c,1)| = (a-b)(b-c)(a-c)

    Text Solution

    |

  16. Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,c...

    Text Solution

    |

  17. Prove that: {:|(a^2,a,b+c),(b^2,b,c+a),(c^2,c,ab)| = -(a+b+c)(a-b)(b...

    Text Solution

    |

  18. Prove that: {:|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)|=3abc -a^3-b^3-c^...

    Text Solution

    |

  19. Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b...

    Text Solution

    |

  20. Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-...

    Text Solution

    |