Home
Class 12
MATHS
Without expanding, prove the following ...

Without expanding, prove the following
`|(x+4,x,x),(x,x+4,x),(x,x,x+4)|=16(3x+4)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Without expanding, prove the following |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)|=9y^2(x+y)

Expand the following : (1-x + x^2)^4 .

Expand the following : (y^2+3x)^4 .

Using the propertis of derminants, prove tha |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x+4)(4-x)^(2)

Expand the following (4-1/(3x))^3

Expand the following : (x^2+3/x)^4, x ne 0 .

Expand the following : 1/(sqrt(5x+4x)) , x< 5/4 .

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  2. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  3. Without expanding, prove the following |(x+4,x,x),(x,x+4,x),(x,x,x+...

    Text Solution

    |

  4. using properties of determinant, prove that abs{:(y+k , y , y ),(y , y...

    Text Solution

    |

  5. Prove that: {:|(x,y,x+y),(y,x+y,x),(x+y,x,y)| = -2(x^3+y^3)

    Text Solution

    |

  6. By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2]...

    Text Solution

    |

  7. Prove that: {:|(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,)|=(a+b)+c)(a^2+b^2+...

    Text Solution

    |

  8. Prove that: {:|(1,a,a),(a,1,a),(a,a,1)|= (2a+1),(1-a)^2

    Text Solution

    |

  9. Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+...

    Text Solution

    |

  10. Prove that: {:|(1,1,1),(a,b,c),(bc,ca,ab)| = (a-b)(b-c)(c-a)

    Text Solution

    |

  11. Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  12. Prove that: {:|(bc,a,1),(ca,b,1),(ab,c,1)| = (a-b)(b-c)(a-c)

    Text Solution

    |

  13. Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,c...

    Text Solution

    |

  14. Prove that: {:|(a^2,a,b+c),(b^2,b,c+a),(c^2,c,ab)| = -(a+b+c)(a-b)(b...

    Text Solution

    |

  15. Prove that: {:|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)|=3abc -a^3-b^3-c^...

    Text Solution

    |

  16. Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b...

    Text Solution

    |

  17. Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-...

    Text Solution

    |

  18. Prove that: {:|(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=|(x,x^2,x^3),(y,...

    Text Solution

    |

  19. Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+z...

    Text Solution

    |

  20. By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+...

    Text Solution

    |