Home
Class 12
MATHS
Prove that: {:|(1,a,a),(a,1,a),(a,a,1)...

Prove that:
`{:|(1,a,a),(a,1,a),(a,a,1)|= (2a+1),(1-a)^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1):}|=-2

Prove that : 2 tan^-1(1/7) + tan^-1(1/3) = tan^-1(9/13)

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that tan^(-1)""(1)/(2)+tan^(-1)""(2)/(11)=(1)/(2)sin^(-1)""(24)/(25)

If xy + yz + zx = 1 , prove that : x/(1-x^2)+y/(1-y^2)+z/(1-z^2)= (4xyz)/((1-x^2)(1-y^2)(1-z^2)) .

Prove that the points A (1,2,3), B(2,3,1) and C(3,1,2) are the vertices of an equilateral triangle.

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Prove that : tan^-1 [frac { (1+x)^(1/2) - (1-x)^(1/2)}{ (1+x)^(1/2) + (1-x)^(1/2)}]=frac{pi}{4}-frac{1}{2} cos^-1x .

Prove that : tan^-1 [frac { (1+z)^(1/2) - (1-z)^(1/2)}{ (1+z)^(1/2) + (1-z)^(1/2)}]=frac{pi}{4}-frac{1}{2} cos^-1 (z) .

Prove that: a^(-1)/(a^-1 +b^-1)+a^-1/(a^-1-b^-1)=(2b^2)/(b^2-a^2)

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2]...

    Text Solution

    |

  2. Prove that: {:|(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,)|=(a+b)+c)(a^2+b^2+...

    Text Solution

    |

  3. Prove that: {:|(1,a,a),(a,1,a),(a,a,1)|= (2a+1),(1-a)^2

    Text Solution

    |

  4. Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+...

    Text Solution

    |

  5. Prove that: {:|(1,1,1),(a,b,c),(bc,ca,ab)| = (a-b)(b-c)(c-a)

    Text Solution

    |

  6. Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  7. Prove that: {:|(bc,a,1),(ca,b,1),(ab,c,1)| = (a-b)(b-c)(a-c)

    Text Solution

    |

  8. Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,c...

    Text Solution

    |

  9. Prove that: {:|(a^2,a,b+c),(b^2,b,c+a),(c^2,c,ab)| = -(a+b+c)(a-b)(b...

    Text Solution

    |

  10. Prove that: {:|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)|=3abc -a^3-b^3-c^...

    Text Solution

    |

  11. Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b...

    Text Solution

    |

  12. Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-...

    Text Solution

    |

  13. Prove that: {:|(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=|(x,x^2,x^3),(y,...

    Text Solution

    |

  14. Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+z...

    Text Solution

    |

  15. By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+...

    Text Solution

    |

  16. Without expanding, prove the following |(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  17. Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(...

    Text Solution

    |

  18. Prove that |{:(b+c,a,a),(b,c+a,b),(c,c,a+b):}| = 4 abc

    Text Solution

    |

  19. Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

    Text Solution

    |

  20. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |