Home
Class 12
MATHS
Without expanding, prove the following ...

Without expanding, prove the following
`|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(a+b+c)(ab+bc+ca-a^2-b^2-c^2)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Without expanding, prove the following |(a,b-c,c-b),(a-c,b,c-a),(a-b,b-a,c)|=(a+b-c)(b+c-a)(c+a-b)

Without expanding, prove the following |(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2b,b^2c,0)|=2a^3b^3c^3

Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,ca,ab)|=(a-b)(b-c)(c-a)(ab+bc+ca)

Without expanding, prove the following |(1,a,a^3),(1,b,b^3),(1,c,c^3)|=(a-b)(b-c)(c-a)(a+b+c)

Without expanding, prove the following |(a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b)|=a^3+b^3+c^3-3abc

Without expanding, prove the following |(a^3+1,a^2,a),(b^3+1,b^2,b),(c^3+1,c^2,c)|=-(a-b)(b-c)(c-a)(abc+1)

Without expanding, prove that the following determinants vanish: {:|(a,b,a+b),(b,c,b+c),(c,a,c+a)|

Without expanding, prove that : |{:(1, bc, a(b+ c) ),(1, ca, b ( c+ a) ),(1, ab , c( a+ b)):}|=0 .

Without expanding show that the following determinants vanish |(4,a,b+c),(4,b,c+a),(4,c,a+b)|

Add the following: a – b + ab, b – c + bc, c – a + ac

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+z...

    Text Solution

    |

  2. By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+...

    Text Solution

    |

  3. Without expanding, prove the following |(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  4. Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(...

    Text Solution

    |

  5. Prove that |{:(b+c,a,a),(b,c+a,b),(c,c,a+b):}| = 4 abc

    Text Solution

    |

  6. Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

    Text Solution

    |

  7. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  8. Prove that : |[x+y+z,-z,-y],[-z, x+y+z, -x],[-y,-x,x+y+z]|= 2(x+y)(y+z...

    Text Solution

    |

  9. Show that: |[x-y-z,2x,2x],[2y,y-z-x,2y],[2z,2z,z-x-y]|=(x+y+z)^3

    Text Solution

    |

  10. Show that: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  11. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  12. Solve for x":"|(a+x,a-x,a-x),(a-x,a+x,a-x),(a-x,a-x,a+x)|=0

    Text Solution

    |

  13. Solve the equation |(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,3x-64)...

    Text Solution

    |

  14. Prove that the determinant |[x,sintheta,costheta],[-sintheta,-x,1],[co...

    Text Solution

    |

  15. Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^...

    Text Solution

    |

  16. Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b...

    Text Solution

    |

  17. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  18. Without expanding show that following : |[a,a+b,a+b+c],[2a,3a+2b,4a+3b...

    Text Solution

    |

  19. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  20. Prove that: |[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3.

    Text Solution

    |