Home
Class 12
MATHS
Prove that : {:|(2y1z1,y1z2+y2z1,y1z3+...

Prove that :
`{:|(2y_1z_1,y_1z_2+y_2z_1,y_1z_3+y_3z_1),(y_1z_2+y_2z_1,2y_2z_2,y_2z_3+y_3z_2),(y_1z_3+y_3z_1,y_2z_3+y_3z_2,2y_3z_3)|=0`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+z)

If a x_1^2+by_1^2+c z_1^2=a x_2^2+b y_2^2+c z_2^2=a x_3 ^2+b y_3 ^2+c z_3^ 2=d a x_2x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1= a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that | x_1 y_1 z_1 x_2 y_2 z_2 x_3 y_3 z_3 |= (d-f){(d+2f)/(a b c)}^(1//2)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

Prove that: {:|(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=|(x,x^2,x^3),(y,y^2,y^3),(z,z^2,z^3)| = xyz(x-y(y-z)(z-x)

Prove that |[[x,y,z],[x^2,y^2,z^2],[x^3,y^3,z^3]]|= xyz (x-y)(y-z)(z-x)

If x_(1) = 3y_(1) + 2y_(2) -y_(3), " " y_(1)=z_(1) - z_(2) + z_(3) x_(2) = -y_(1) + 4y_(2) + 5y_(3), y_(2)= z_(2) + 3z_(3) x_( 3)= y_(1) -y_(2) + 3y_(3)," " y_(3) = 2z_(1) + z_(2) espress x_(1), x_(2), x_(3) in terms of z_(1) ,z_(2),z_(3) .

The three points (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)), (x_(3), y_(3), z_(3)) are collinear when…………

(x+y+z) is fator of : {:|(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y)|

Show that |(1,x^2,x^3),(1,y^2,y^3),(1,z^2,z^3)| = (x-y),(y-z)(z-x)(xy+yz+zx)

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Prove that : {:|(2y1z1,y1z2+y2z1,y1z3+y3z1),(y1z2+y2z1,2y2z2,y2z3+y3...

    Text Solution

    |

  2. Let A be a square matrix of order 3xx3, then prove that |kA|=k|A|.

    Text Solution

    |

  3. If any two rows (or columns) of a determinant are identical, the value...

    Text Solution

    |

  4. Answer in one word. {:|(3,1,6),(5,2,10),(7,4,14)|

    Text Solution

    |

  5. If A is a square matrix of order 3 and |3A| = k|A|, then write the val...

    Text Solution

    |

  6. Write the value of the following determinant abs{:(a-b, b-c, c-a),(b-c...

    Text Solution

    |

  7. Use properties of determinants ot evaluate: {:|(2,a,abc),(2,b,bca),(...

    Text Solution

    |

  8. Use properties of determinants ot evaluate: {:|(x+y,y+z,z+x),(z,x,y)...

    Text Solution

    |

  9. Evaluate |[102,18,36],[1,3,4],[17,3,6]|

    Text Solution

    |

  10. Use properties of determinants ot evaluate: {:|(2,3,1),(4,6,2),(1,3,...

    Text Solution

    |

  11. Use properties of determinants ot evaluate: {:|(2,3,5),(261,592,127)...

    Text Solution

    |

  12. Show that x=1 is a root of the equation: {:|(x+1,2x,-11),(2x,x+1,-4...

    Text Solution

    |

  13. If p,q,r ar in A.P. write the value of : {:|(x+1,x+2,x+2p),(x+2,x+3,...

    Text Solution

    |

  14. Without expanding, prove that the following determinant vanishes. |...

    Text Solution

    |

  15. Without actual expansion, prove that the following determinants vanish...

    Text Solution

    |

  16. Without actual expansion, prove that the following determinants vanish...

    Text Solution

    |

  17. Without actual expansion, prove that the following determinants vanish...

    Text Solution

    |

  18. Without actual expansion, prove that the following determinants vanish...

    Text Solution

    |

  19. Without actual expansion, prove that the following determinants vanish...

    Text Solution

    |

  20. Without expanding, prove that Delta = abs{:(x+y, y + z, z+ x),(z, x ,...

    Text Solution

    |

  21. Without expanding, prove that : |{:(1, bc, a(b+ c) ),(1, ca, b ( c+ a)...

    Text Solution

    |