Home
Class 12
MATHS
If P = {:[(1,2,-2),(-1,3,0),(0,-2,1)], f...

If `P = {:[(1,2,-2),(-1,3,0),(0,-2,1)]`, find `P^-1`. Verify that `PP^-1= I`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of A = [(2,1,3),(4,-1,0),(-7,2,1)] and verify that A^-1 A = I_3 = A A^-1 .

If A = {:[(2,0,1),(2,1,3),(1,-1,0)] , then find A^2 - 5A 6I

If A = {:[(-1,1,0),(0,-1,1),(2,3,4)] , verify that: 3/4A' = (3/4A)'

If P = {:[(0,1,0),(0,2,1),(2,3,0)], Q = [(1,2),(3,0),(4,1)] , find PQ.

If A = {:[(1,2,3),(1,1,3),(1,2,4)] , verify A.(Adj.A) = |A| I and find A^-1 .

If A' = {:[(3,4),(-1,2),(0,1)] and B =[(-1,2,1).(1,2,3] , then verify that :(A+B)' = A' +B'.

If A' = {:[(3,4),(-1,2),(0,1)] and B = [(-1,2,1),(1,2,3)] , then verify that (A-B)' = A' - B'

If A= [(1,-1,1),(2,-1,0),(1,0,0)] and B = [(1,3,2),(1,1,1),(2,-3,-1)] , verify that (AB)^-1 = B^-1 A^-1

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Find the inverse of each of the following: {:[(2,1,3),(4,-1,0),(-7,2...

    Text Solution

    |

  2. Find the inverse of each of the following: {:[(1,0,0),(3,3,0),(5,2,-...

    Text Solution

    |

  3. If P = {:[(1,2,-2),(-1,3,0),(0,-2,1)], find P^-1. Verify that PP^-1= I...

    Text Solution

    |

  4. Compute (AB)^(-1) , where A=[(5,0,4),(2,3,2),(1,2,1)],B^(-1)=[(1,2,3),...

    Text Solution

    |

  5. If A={:[(1,2,2),(2,1,2),(2,2,1)], prove thst A^2-4A-5I = O and hence,...

    Text Solution

    |

  6. If A = [[2,-1,1],[-1,2,-1],[1,-1,2]], Verify that A^3-6A^2+9A-4I=O and...

    Text Solution

    |

  7. If A^-1 = [[3,-1,1],[-15,6,-5],[5,-2,2]] and B = [[1,2,-2],[-1,3,0],[0...

    Text Solution

    |

  8. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  9. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that (A^-1)^-1 = A

    Text Solution

    |

  10. Find |A|: A = {:[(1,-2,2),(2,3,5),(-2,0,1)]

    Text Solution

    |

  11. Verify A(adj A) = (adj A).A = |A|.I : [[1,-1,2],[3,0,-2],[1,0,3]]

    Text Solution

    |

  12. Find |A|: A = {:[(2,1,5),(3,-2,-4),(-3,1,-2)]

    Text Solution

    |

  13. Find the inverse of the matrix : A = {:[(a,b),(c,(1+bc)/a)].

    Text Solution

    |

  14. Find the determinant of the matrix : A = {:[(a,b),(c,bc)]

    Text Solution

    |

  15. Find the determinant of the matrix : A = {:[(a,b),(c,(1+bc)/a)]

    Text Solution

    |

  16. Find the inverse of the matrix : A = {:[(a,b),(c,(1+bc)/a)].

    Text Solution

    |

  17. Find the inverse of the matrix : A = [(costheta,sintheta),(-sintheta,c...

    Text Solution

    |

  18. Find the transpose of the matrix : A = {:[(a,b),(c,(1+bc)/a)]

    Text Solution

    |

  19. Find the inverse of the matrix : {:[(2//13,-5//3),(3//13,-1//13)]

    Text Solution

    |

  20. Find the inverse of the matrix : {:[(3/14,1/7),(-2/7,1/7)]

    Text Solution

    |