Home
Class 12
MATHS
Without expanding, show that the followi...

Without expanding, show that the following determinants vanish:
`{:|(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma)),cos(beta-gamma),1|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are real numbers, then without expanding at any stage, show that |1cos(beta-alpha)"cos"(gamma-alpha)"cos"(alpha-beta)1"cos"(gamma-beta)"cos"(alpha-gamma)"cos"(beta-gamma)1|=0

Express: {:|(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1)| as the product of two determinants and hence prove that the determinant vanishes.

Without expanding, prove the following |(1,1,1),(alpha,beta,gamma),(betagamma,gammaalpha,alphabeta)|=(beta-alpha)(gamma-alpha)(alpha-beta)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos(alpha+beta)/(2)cos(beta+gamma)/2cos(gamma+alpha)/2

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma , then which of the following is/are true:- (a) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c) sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d) sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

Using properties of determinants, prove that: |[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]| = 0

If cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2 , prove that cosalpha+cosbeta+cosgamma= sinalpha+ sinbeta+singamma=0

Show that the determinant Delta(x) given by Delta(x) = |{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}| is independent of x .

If cos (alpha+beta) sin (gamma+delta)=cos (alpha-beta) sin (gamma-delta) , prove that : cot alpha cot beta cot gamma= cot delta .

If cot alpha cot beta=2 , show that (cos (alpha+beta))/(cos (alpha-beta)) = 1/3 .

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Show that the points (a+5,a-4),(a-1,a+3) and (a,a) do not lie on a str...

    Text Solution

    |

  2. If A=[(3,1),(7,5)] , find x and y so that A^2 + xI-yA=0. Hence find A^...

    Text Solution

    |

  3. Without expanding, show that the following determinants vanish: {:|(...

    Text Solution

    |

  4. Prove that: {:|(a+b+nc,na-a,nb-b),(nc-c,b+c+na,nb-b),(nc-c,na-a,c+a+...

    Text Solution

    |

  5. Prove that triangle = |[a+bx,c+dx,p+qx],[ax+b,cx+d,px+q],[u,v,w]| = (1...

    Text Solution

    |

  6. If |[[x,2],[18,x]]|=|[[6,2],[18,6]]|, then x is equal to:

    Text Solution

    |

  7. Let A be a square matrix of order 3 xx 3. Then I kA I is equal to :

    Text Solution

    |

  8. Which of the following is correct

    Text Solution

    |

  9. If area of triangle is 35 sq. units with vertices (2,-6), (5, 4) and (...

    Text Solution

    |

  10. Let A be a non-singular matrix of order 3 xx 3. Then I adj. A I is equ...

    Text Solution

    |

  11. Select the Correct Option If A is an invertible matrix of order 2, the...

    Text Solution

    |

  12. If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,...

    Text Solution

    |

  13. Let A = [[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], wher...

    Text Solution

    |

  14. If |(2x,5),(8,x)|=|(6,-2),(7,3)| , write the value of x.

    Text Solution

    |

  15. The area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq. u...

    Text Solution

    |

  16. If A,B and C are angles of a triangle, then the determinant: {:|(-1,...

    Text Solution

    |

  17. If determinant A is of order 2xx2 and |A|=3, then the value of |2A| is

    Text Solution

    |

  18. Write the value {:|(x,x+1),(x-1,x)|

    Text Solution

    |

  19. If matric A = {:|(3-2x,x+1),(2,4)| is singular, then x is equal to

    Text Solution

    |

  20. The value of x from the equation {:|(x,2,3),(4,x,1),(x,2,5)|=0 is

    Text Solution

    |